基于迁移CNN的江淮持续性强降水环流分型  被引量:9

Circulation Pattern Classification of Persistent Heavy Rainfall in Jianghuai Region Based on the Transfer Learning CNN Model

在线阅读下载全文

作  者:蔡金圻 谭桂容[1] 牛若芸 Cai Jinqi;Tan Guirong;Niu Ruoyun(Key Laboratory of Meteorological Disaster,Ministry of Education(KLME),Joint International Research Laboratory of Climate and Environment Change(ILCEC),Collaborative Innovation Center on Forecast and Eval uation of Meteorological Disasters(CICFEMD),Nanjing University of Information Science&Technology,Nanjing 210044;Nat ional Meteorological Center,Beijing 100081)

机构地区:[1]南京信息工程大学气象灾害教育部重点实验室/气候与环境变化国际合作联合实验室/气象灾害预报预警与评估协同创新中心,南京210044 [2]国家气象中心,北京100081

出  处:《应用气象学报》2021年第2期233-244,共12页Journal of Applied Meteorological Science

基  金:国家重点研发计划(2018YFC1507703,2018YFC1505804)。

摘  要:利用新建的1981—2018年区域持续性强降水个例集、1981—2018年中国逐日降水量及NCEP/NCAR全球再分析资料,运用江淮地区持续性强降水典型模态个例样本及残差神经网络(CNN),通过迁移学习分步训练建立针对江淮强降水的环流客观分型模型;并运用该模型对1981—2015年全国持续性强降水个例的环流进行客观分型,比较其与相似量(R)分型、余弦相似系数(COS)分型的效果,且对2016—2018年逐日环流进行客观识别与分型。结果表明:迁移CNN在拟合准确率达到100%后,测试集损失函数很快稳定,准确率较高,比R分型、COS分型效果好。在强降水客观分型中,迁移CNN所得各型与典型模态降水之间的相关系数远高于R分型、COS分型,其中不一致型个例分析表明迁移CNN所得各型与典型模态降水间的相关系数明显高于R分型、COS分型。在独立样本分型中,迁移CNN所得各型与典型模态降水的相关系数也均高于R分型、COS分型,且对非持续性强降水环流分型也存在一定的识别能力。Newly reconstructed dataset of regional persistent historical heavy rain events in 1981—2018,corresponding daily rainfall data of 2474 observational stations in China,and NCEP/NCAR global reanalysis data of daily geopotential height field are used to study the persistent heavy rain events in Jianghuai Region.Based on 72 persistent heavy rainfall cases,typical rain patterns and circulation fields are refined by empirical orthogonal function(EOF).And the corresponding time coefficient is obtained by projecting rainfall of individual days to the typical rain patterns,and the training and test dataset samples are determined by the time coefficient.Using residual neural network(CNN),a transfer learning CNN classification model of Jianghuai persistent heavy rainfall is established by three transfer learning processes.Compared with the analog quantity(R)and Cosine similarity coefficient(COS)methods,the transfer learning CNN model has the highest classification accuracy on the test dataset.CNN,R and COS methods are used to objectively classify the circulation of all persistent heavy rain cases and to synthesize the distribution of various types of rainfall and circulation during 1981—2015.The statistical analysis shows that the transfer learning CNN model is better at classification.By comparing the correlation coefficients between rain distribution of each type and typical rain patterns,it shows that the transfer learning CNN model performs better than the R and COS methods.The variance between different types of geopotential height fields at 500 hPa obtained by the CNN model is the largest and the CNN model can better distinguish the circulation fields of different types of heavy rainfall.The analysis of samples with inconsistent objective classification of three methods shows that the correlation coefficients of various patterns of rainfall of the transfer learning CNN model are significantly higher than those of R typing and COS typing methods.The spatial distribution of various rainfall patterns of CNN model can

关 键 词:江淮地区 强降水客观分型 残差神经网络 迁移学习 

分 类 号:P426.6[天文地球—大气科学及气象学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象