检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张青青 汤红波[1] 游伟[1] 李英乐[1] ZHANG Qingqing;TANG Hongbo;YOU Wei;LI Yingle(Information Engineering University,Zhengzhou 450002,China)
机构地区:[1]信息工程大学,河南郑州450002
出 处:《网络与信息安全学报》2021年第1期46-56,共11页Chinese Journal of Network and Information Security
基 金:国家自然科学基金(61941114,61521003,61801515)。
摘 要:针对现有安全防御手段无法抵御网络功能虚拟化平台中众多未知的漏洞与后门的问题。运用拟态防御思想,提出一种网络功能虚拟化的拟态防御架构,并针对其中的异构体池构建问题设计了一种基于免疫算法的网络功能异构冗余部署方法。首先,结合熵值法对异构体之间的异构度进行量化评估;然后,以实现异构体之间异构度最大为优化目标将网络功能异构冗余部署问题构建成极大极小问题;最后,基于免疫算法快速求解最优部署方案。仿真结果表明,该方法可以迅速收敛到最优部署方案,并保证异构体之间的异构度值整体分布在较高的水平,有效增加了异构体池的多样性,提升了攻击者的攻击难度。Aiming at the problem that the existing security defense methods cannot resist many unknown vulnerabilities and backdoors in the network function virtualization platform,a mimic defense architecture for network function virtualization using mimic defense ideas was proposed,a heterogeneous redundant deployment method based on an immune algorithm for the construction of heterogeneous pools was proposed.Firstly,the degree of heterogeneity between heterogeneous entities was quantitatively evaluated in combination with the entropy value method,then the network function heterogeneous redundant deployment problem was constructed into a minimax problem with the optimization goal of maximizing the degree of heterogeneity between heterogeneous entities,and finally the immune algorithm was used to quickly solve the optimal deployment solution of network functions.Simulation re-sults show that the proposed method can quickly converge to an optimal deployment scheme and ensure that the overall distribution of heterogeneity between heterogeneous bodies is at a high level,effectively increasing the diversity between heterogeneous bodies and improving the attacker's difficulty.
分 类 号:TP393[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.142.244.250