检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:雷剑 LEI Jian(School of Electrical Engineering,University of South China,Huanan Hengyang 421000,China)
出 处:《智能计算机与应用》2020年第11期101-105,共5页Intelligent Computer and Applications
摘 要:针对传统BP神经网络搭建的电梯群控算法中出现的易于陷入局部极值、收敛速度慢、预测值与实际值偏差较大等问题,本文通过分析研究,在使用BP神经网络,拟合某台电梯对某一楼层呼梯信号响应满意度函数的基础上,应用Adam算法优化神经网络的权值和阈值,使用Dropout缓解过拟合现象,减小误差,提高网络预测精度。仿真结果表明,与传统的优化算法相比,此算法收敛速度更快,模型预测准确率更高,减少了候梯时间,提高了电梯运载效率。For the elevator group control algorithm built by the traditional BP neural network,it is easy to fall into the local minimum,the convergence speed is slow,and the deviation between the predicted value and the actual value is large.Through analysis and research,on the basis of using the BP neural network to fit the satisfaction function expression of a certain elevator’s response to a certain floor call signal,the Adam algorithm is used to optimize the neural network weights and thresholds,and Dropout is used to alleviate The phenomenon of fitting reduces errors.The simulation results show that compared with the traditional optimization algorithm,the convergence speed is faster,the model prediction accuracy is higher,the waiting time and the long waiting time are reduced,and the elevator carrying efficiency is improved.The results show that the average relative error is less than 2%.
关 键 词:Adam算法 BP神经网络 电梯群控算法 多目标优化
分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222