夜间脉搏血氧饱和度监测对阻塞性睡眠呼吸暂停低通气综合征预测及分类的价值  被引量:7

Value of night pulse oximetry monitoring in obstructive sleep apnea hypopnea syndrome prediction and classification

在线阅读下载全文

作  者:张景 赵丹 周仲兴[1] 王彦[2] 陈宝元[2] Zhang Jing;Zhao Dan;Zhou Zhongxing;Wang Yan;Chen Baoyuan

机构地区:[1]天津大学精密仪器与光电子工程学院生物医学工程系,300072 [2]天津医科大学总医院呼吸与危重症医学科,300052

出  处:《中华结核和呼吸杂志》2021年第2期101-107,共7页Chinese Journal of Tuberculosis and Respiratory Diseases

摘  要:目的探讨夜间脉搏血氧饱和度(SpO_(2))监测对阻塞性睡眠呼吸暂停低通气综合征(OSAHS)预测和分类的价值。方法回顾性分析2018年1月至2019年12月就诊于天津医科大学总医院睡眠中心的580例打鼾患者的临床资料,男418例,女162例,年龄13~85(49±14)岁,所有患者均接受了整夜多导睡眠监测(PSG),睡眠呼吸暂停低通气指数(AHI)为0~101.4(43.06±27.47)次/h。其中,非OSAHS组(AHI<5次/h)52例,轻度OSAHS组(5次/h<AHI≤15次/h)69例,中度OSAHS组(15次/h<AHI≤30次/h)98例,重度OSAHS组(AHI>30次/h)361例。从SpO_(2)信号中提取13个指标,与AHI做相关性分析后,最终筛选11个与AHI相关的SpO_(2)指标(3%氧减饱和度回升指数,SpO_(2)低于90%曲线下面积,最低SpO_(2)平均值,最低SpO_(2),平均SpO_(2),SpO_(2)分别低于95%、90%、85%、80%、75%、70%的时间百分比),加入3个人口学指标[性别、年龄、体质量指数(BMI)]作为全部特征。分别利用多元线性回归(MLR)方法和反向传播神经网络(BPNN)多分类方法,进行AHI预测和OSAHS严重程度分类。采用SPSS 25.0软件进行统计学分析,计量资料均采用Pearson相关检验。结果对MLR方法和BPNN多分类方法进行评价。MLR方法获得了较高预测性能,其模型拟合优度r2=0.848(P<0.05),预测相关系数r=0.901(P<0.05)。BPNN多分类方法分类结果的特异度和阴性预测率均在90%左右,敏感度和阳性预测率也较高,其中非OSAHS组分类敏感度为88.46%±4.50%,重度OSAHS组分类的敏感度为94.74%±0.76%。结论基于夜间SpO_(2)监测仪记录的信号,利用MLR模型进行AHI预测以及利用BPNN模型进行多分类的方法,可能对OSAHS有较高的预测和分类价值。Objective To explore the value of night pulse oximetry monitoring in the prediction and classification of obstructive sleep apnea hypopnea syndrome(OSAHS).Methods From January 2018 to December 2019,580 snoring patients admitted to the Sleep Center of Tianjin Medical University General Hospital were analyzed retrospectively.There were 418 males and 162 females,aging 13-85(49±14)years.All subjects underwent polysomnography,and the apnea hypopnea index(AHI)was 0-101.4(43.06±27.47)times/hour.There were 52 cases in the non-OSAHS group(AHI<5 times/h),69 cases in the mild OSAHS group(5 times/h<AHI≤15 times/h),98 cases in the moderate OSAHS group(15 times/h<AHI≤30 times/h),and 361 cases in the severe OSAHS group(30 times/h<AHI).Correlation analysis was performed between indicators extracted from SpO_(2) signal and AHI,and 11 blood oxygen indicators related to AHI were selected(3%oxygen reduction recovery index,the area of SpO_(2) under the 90%curve,average lowest SpO_(2),lowest SpO_(2),the average SpO_(2),the percentage of time SpO_(2) under 95%,90%,85%,80%,75%,70%).Finally,gender,age and body mass index(BMI)were added.We ysed multiple linear regression(MLR)method to achieve AHI prediction,and back propagation neural network(BPNN)multi-classification method to achieve OSAHS severity classification.Statistical analysis was performed based on SPSS 25.0.The measurement data were analyzed using Pearson correlation test.Results The MLR method achieved high prediction performance,with a prediction correlation coefficient r=0.901(P<0.05)and a goodness of fit r2=0.848(P<0.05).The specificity and negative prediction rate of BPNN method classification results were both around 90%,and the sensitivity and positive prediction rates were also high.Among them,the sensitivity of the non-OSAHS group(AHI<5 times/h)was 88.46%±4.50%,and the sensitivity of the severe OSAHS group(AHI>30 times/h)was 94.74%±0.76%.Conclusion Based on the signals recorded by the SpO_(2) monitor,the methods of using MLR model for AHI prediction and using B

关 键 词:睡眠呼吸暂停 阻塞性 血氧测定法 呼吸暂停低通气指数 多元线性回归 反向传播神经网络 

分 类 号:R766[医药卫生—耳鼻咽喉科]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象