检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:郭礼权 付尧顺 郁文生 Liquan Guo;Yaoshun Fu;Wensheng Yu
机构地区:[1]北京邮电大学天地互联与融合北京市重点实验室,北京100876
出 处:《中国科学:数学》2021年第1期115-136,共22页Scientia Sinica:Mathematica
基 金:国家自然科学基金(批准号:61936008和61571064)资助项目。
摘 要:本文基于证明辅助工具Coq,完整实现林群院士和张景中院士等倡导的第三代微积分|没有极限的微积分|理论构架的形式化验证,包括对张景中等发表的题为\微积分基础的新视角"论文中全部定义和定理的Coq描述.进而,对定理无例外地给出Coq的机器证明代码,所有形式化过程已被Coq验证,并在计算机上运行通过,体现了基于Coq的数学定理机器证明具有可读性和交互性的特点,其证明过程规范、严谨、可靠.本文是实践研究人员利用计算机学习、理解、构建乃至教育现代数学理论的一个尝试.Based on the proof assistant Coq, a formal verification of the third generation calculus theory advocated by Academicians Qun Lin and Jingzhong Zhang is completely implemented, including Coq descriptions of all the definitions and theorems in Jingzhong Zhang’s paper entitled "A new way viewing the foundation of calculus". A proof code of all the theorems is given without exception, and all the formalization processes have been verified by Coq. The formal proof demonstrates that the Coq-based mechanized proof has the characteristics of readability and interactivity. The proof process is standardized, rigorous and reliable. This paper is an attempt of the idea that researchers learn, understand, construct, and even educate mathematics by computer assistant.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.200