检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:金智新[1,2] 刘倩 邓存宝[2] 王延生 JIN Zhixin;LIU Qian;DENG Cunbao;WANG Yansheng(College of Safety Science and Engineering,Liaoning Technical University,Fuxin Liaoning 123000,China;College of Safety and Emergency Management Engineering,Taiyuan University of Technology,Taiyuan Shanxi 030024,China)
机构地区:[1]辽宁工程技术大学安全科学与工程学院,辽宁阜新123000 [2]太原理工大学安全与应急管理工程学院,山西太原030024
出 处:《中国安全科学学报》2021年第1期1-7,共7页China Safety Science Journal
基 金:国家自然科学基金重点项目资助(U1810206)。
摘 要:为解决生产安全事件危险性度量中因素状态变化的随机性及状态变化范围的模糊性问题,基于安全结构理论,通过分析生产安全事件的失稳域与活动环境属性空间之间的关系,阐释安全型、危险型、可控型3类危险性模型;采用概率理论和模糊理论数学表述生产安全事件的随机危险性、模糊危险性以及随机-模糊耦合危险性;以瓦斯体积分数为研究对象,给出瓦斯体积分数随机-模糊耦合危险性度量分析计算示例。结果表明:工作面瓦斯体积分数随机-模糊耦合危险度为24.41%,环境因素的状态概率密度分布和因素状态模糊隶属度对生产安全事件危险度具有双重影响,随机-模糊耦合模型具有一定的可行性。In order to address randomness of factor state change and fuzziness of state change range in risk measurement of production safety events,relationship between their instability domain and activity environment attribute space was analyzed based on safety structure theory.Three kinds of risk models were explained,including safety type,dangerous type and controllable type.Then,probability theory and fuzzy theory were used to mathematically describe random risk,fuzzy risk and stochastic fuzzy coupled risk of the events.Finally,with gas volume fraction taken as object,a calculation example of stochastic fuzzy coupled risk measurement analysis was obtained.The results show that the risk of gas volume fraction on the working face is 24.41%,and state probability density distribution of environmental factors and fuzzy membership degree of factor state have a dual impact on risk of safety events,which verifies feasibility of stochastic fuzzy coupled model to some extent.
关 键 词:生产安全事件 失稳域 危险性度量 不确定性 随机-模糊耦合模型
分 类 号:X928.03[环境科学与工程—安全科学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.40