检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张源 陶翼飞[1] 王加冕 ZHANG Yuan;TAO Yifei;WANG Jiamian(Faculty of Mechanical and Electrical Engineering,Kunming University of Science and Technology,Kunming,650500)
出 处:《中国机械工程》2021年第6期714-720,共7页China Mechanical Engineering
基 金:国家自然科学基金(51165014)。
摘 要:对于求解混合流水车间调度问题,标准差分进化算法存在易陷入局部极值的缺点,为此,以最小化最大完工时间为目标函数建立了仿真优化模型,并提出了一种改进差分进化算法进行求解。将所提算法结合反向学习策略生成初始种群,在差分进化中进一步引入自适应差分因子,并在个体选择机制中引入模拟退火算法的Metropolis准则,有效提高了该算法的全局搜索能力。最后基于不同规模算例对所提算法和经典算法进行了仿真实验结果对比,验证了所提改进差分进化算法的有效性和优越性。Aiming at solving the hybrid flow shop scheduling problems,the standard DE algorithm had the disadvantages of easily falling into local extremum.Therefore,an improved DE algorithm was proposed to solve the simulation optimization model based on the minimization of makespan.The proposed algorithm was combined with the reverse learning strategy to generate the initial population,the adaptive difference factor was further introduced into DE,and the Metropolis criterion of simulated annealing algorithm was introduced in the individual selection mechanism,which effectively improved the global search ability of the algorithm.Finally,the simulation results of the proposed algorithm and the classical algorithms were compared based on different scale examples to verify the effectiveness and superiority of the proposed improved DE algorithm.
关 键 词:混合流水车间 差分进化算法 反向学习策略 METROPOLIS准则 最大完工时间
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117