检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:郭雪艳[1] 周健[1] 范俊杰[1] 李秀君[2] 李树军 刘冬莹[1] GUO Xue-yan;ZHOU Jian;FAN Jun-jie;LI Xiu-jun;LI Shu-jun;LIU Dong-ying(Weifang City Center for Diseases Control and Prevention,Weifang,Shandong,261061,China;不详)
机构地区:[1]潍坊市疾病预防控制中心,山东潍坊261061 [2]山东大学公共卫生学院,山东济南250012 [3]潍坊市气象局,山东潍坊261011
出 处:《预防医学论坛》2020年第12期888-890,894,共4页Preventive Medicine Tribune
基 金:潍坊市卫生健康科研项目(项目编号:wfwsjs_2018_010)。
摘 要:目的利用广义相加模型探讨潍坊市气象因素对肾综合征出血热(HFRS)发生的影响,探索可行的预测预警方法。方法收集潍坊市2010~2016年肾综合征出血热逐月发病数及同期气象因素,运用广义相加模型定量研究两者间的剂量反应关系。结果潍坊市月平均气温、月平均相对湿度、月降水量和日照时数与HFRS之间存在非线性关系。平均气温和平均相对湿度都在滞后0月即当月时HFRS发病风险最大,降水量和日照时间则是在滞后2月和3月时风险最大。模型预测结果与实际值拟合较好,模型检验残差均匀分布在0左右。结论潍坊市月平均气温、月平均相对湿度、月降水量和日照时数与HFRS发病呈非线性关系且存在滞后效应,可利用气象资料建立HFRS发病预测模型。Objective Using the generalized additive model to explore the relationship between meteorological factors and Hemorrhagic Fever with Renal Syndrome(HFRS) in Weifang city,and to obtain a practical way to forecast the disease. Methods The monthly HFRS cases and meteorological factors during 2010-2016 in Weifang city were collected and the dose-response relationship between them was quantitatively studied by the generalized additive model(GAM). Results There was a nonlinear relationship between the HFRS and the monthly average temperature,the monthly average relative humidity,the monthly precipitation and the sunshine hours in Weifang city.The risk of HFRS was highest when the mean temperature and mean relative humidity were 0 months behind,while the risk was highest when the precipitation and sunshine duration were 2 and 3 months behind.The predicted results of the model fitted well with the actual values,and the test residuals of the model were uniformly distributed at about 0. Conclusion The monthly average temperature,monthly average relative humidity,monthly precipitation and sunshine hours in Weifang city have a nonlinear relationship with the incidence of HFRS and there is a lag effect.The prediction model of HFRS incidence can be established by using meteorological data.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222