5G基站智能节能方案研究  被引量:11

Research on 5G Base Station Intelligent Energy Saving Solution

在线阅读下载全文

作  者:李露 李福昌[2] 曹亘[2] 吕婷[2] LI Lu;LI Fuchang;CAO Gen;LV Ting(Wireless Technology Research Department,China Unicom Network Technology Research Institute,Beijing 100048,China)

机构地区:[1]中国联合网络通信有限公司网络技术研究院无线技术研究部,北京100048 [2]中国联合网络通信有限公司网络技术研究院,北京100048

出  处:《移动通信》2021年第2期85-88,共4页Mobile Communications

摘  要:提出一种5G基站智能节能方案,用于降低5G基站设备能耗、节省5G网络运营成本、实现移动通信行业节能减排。所提方案是基于人工智能技术,从网络层面统一配置4G/5G基站节能策略,根据网络选定区域内小区的历史业务数据,构建基站业务负荷预测模型,并生成最优的网络节能策略,根据网络节能策略分别执行各基站的节能任务。在节能任务执行后,基站智能节能方案将根据区域内反馈的全网节能效果、网络KPI指标变化、用户感知质量变化等数据,进一步优化节能参数,提高网络节能效果。所提方案可对基站业务量进行准确预测及全天候实时监控,并自动生成节能策略,实现基于多制式网络智能协同的网络区域级智能节能,使节能策略能够适应网络负荷变化,执行更具有灵活性。This paper proposes a 5 G base station intelligent energy-saving solution to reduce the energy consumption of 5 G base station equipment, save 5 G network operating costs, and realize energy conservation and emission reduction in the mobile communication industry. Based on artificial intelligence technology, the proposed solution provides a unified configuration of 4 G/5 G base station energy-saving strategies from the network level. Specifically, according to the historical service data of the cells in the selected network area, a service load prediction model is established for base stations(BS), and the optimal network energy-saving strategy is generated and then each BS executes the energy-saving tasks separately. After the execution of the energy-saving tasks, the intelligent energy-saving solution for BSs further optimizes energy-saving parameters and improves the network energy-saving effect based on the feedback data, including the entire network energy-saving effect, network KPI metric changes, and user perceived quality changes in the selected network area. The proposed solution can accurately predict the BS service volume and monitor them in an all-weather and real-time manner, and automatically generate energy-saving strategies to realize network-level intelligent energy-saving based on multi-standard network intelligent collaboration. Hence the energysaving strategies can adapt to the changes of network loads and be flexible in execution.

关 键 词:5G 无线基站 人工智能 节能 

分 类 号:TN929.5[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象