Computation of pressure drop for dilute gas-solid suspension across thin and thick orifices  被引量:1

在线阅读下载全文

作  者:Santosh Kumar Senapati Sukanta Kumar Dash 

机构地区:[1]Department of Mechanical Engineering,Indian Institute of Technology Kharagpur,West Bengal 721302,India

出  处:《Particuology》2021年第2期209-221,共13页颗粒学报(英文版)

摘  要:The present work deals with the computation of the gas-solid two-phase flow pressure drop across thin and thick orifices for a vertically downward flow configuration at the higher limits of a dilute phase flow situation(0.01≤αs,in≤0.10).The Eulerian-Eulerian(two-fluid)model has been used in conjunction with the kinetic theory of granular flow with a four-way coupling approach.The validation of the solution process has been performed by comparing the computational result with the existing experimental data.It is observed that the two-phase flow pressure drop across the orifice increases with an increase in the thickness of the orifice,and the effect is more prominent at higher solid loading.The pressure drop is found to increase with an increase in the solid volume fraction.An increase in the Reynolds number or the area ratio increases the pressure drop.An increase in the size of the particles reduces the pressure drop across the orifice at both small and relatively large solid volume fractions.Finally,a two-phase multiplier has been proposed in terms of the relevant parameters,which can be useful to evaluate the gas-solid two-phase flow pressure drop across the orifice and can subsequently help to improve the system performance.

关 键 词:Dilute phase flow Gas-solid flow Thin and thick orifice Vertically downward flow Pressure drop 

分 类 号:O35[理学—流体力学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象