检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张荣华 ZHANG Rong-hua(Shangyuquan Coal Mine of CHN Energy,Hequ,Shanxi 036500,China)
机构地区:[1]国家能源集团上榆泉煤矿,山西河曲036500
出 处:《计算技术与自动化》2021年第1期109-113,共5页Computing Technology and Automation
摘 要:对当前煤岩识别方法的研究现状进行了介绍,并提出将最小二乘法模型(Least square model,LSM)和融入平滑滤波思想的鲁棒扩展局部二值模式(Robust extended local binary Pattern,RELBP)融入煤岩识别领域。对基于LSM和RELBP的煤岩识别方法的煤岩自动化识别技术(RELBP-LSM)进行了探讨。结果表明:(1)当前的煤岩识别方法大多存在效果较差、稳定性欠佳、适用范围小等缺点,同时易受人为因素的影响;(2)以最小二乘法和局部二值模式为理论基础,建立起RELBP-LSM煤岩识别方法,并通过参数敏感性分析,确定正则化参数λ的最佳取值为10-3.5,优选模式数d的最佳取值为500;(3)对不同方法的准确识别率进行对比分析,认为RELBP-LSM法不仅具有较高的准确识别率,同时能大大降低内存占用率,加快识别速率和效率。This paper discusses the current research situation of coal and rock recognition methods,and puts forward that the least square model(LSM)and robust extended local binary pattern(RELBP),which are integrated into the idea of smooth filtering,are integrated into the field of coal and rock recognition,and the coal and rock automatic recognition technology(RElB)based on LSM and RELBP is applied to the field of coal and rock recognition P-LSM).The results show that:(1)most of the current methods of coal rock identification have some disadvantages,such as poor effect,poor stability and small application scope,and are easily affected by human factors;(2)based on the least square method and local binary model,the RELBP-LSM method of coal rock identification is established,and the best value of regularization parameterλis determined to be 10-3.5 by parameter sensitivity analysis The best value of pattern number d is 500;(3)by comparing and analyzing the accuracy of different methods,it is considered that RELBP-LSM method not only has a high accuracy of recognition,but also can greatly reduce the memory occupation rate and speed up the recognition rate and efficiency.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7