检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:卢金仪 唐维伟 徐文辉[1,2] 颜露新[1,2] 钟胜[1,2] 邹旭[1,2] LU Jin-yi;TANG Wei-wei;XU Wen-hui;YAN Lu-xin;ZHONG Sheng;ZOU Xu(School of Artificial Intelligence,Huazhong University of Science and Technology,Wuhan 430074,China;National Key Laboratory of Science&Technology on Multi-Spectral Information Processing,Huazhong University of Science and Technology,Wuhan 430074,China)
机构地区:[1]华中科技大学人工智能与自动化学院,湖北武汉430074 [2]华中科技大学多谱信息处理技术国家级重点实验室,湖北武汉430074
出 处:《测控技术》2021年第3期39-45,共7页Measurement & Control Technology
基 金:国防基础科研计划资助(JCKY2018204B068)。
摘 要:基于嵌入式平台的复杂背景目标跟踪技术在智能视频监控设备、无人机跟踪等领域有重要作用。卷积神经网络在跟踪问题上有准确率高、鲁棒性强的优点,但基于卷积特征的算法计算复杂度高,受嵌入式平台面积和功耗的限制,实时性难以满足嵌入式平台应用场景的需求。针对基于卷积特征的跟踪算法计算复杂度高、存储参数量大的难题,率先提出一种利用FPGA实现基于卷积神经网络的复杂背景目标跟踪硬件加速架构。该方法通过利用KL相对熵对目标跟踪算法Siamese-FC进行定点量化,设计了基于通道并行的卷积层加速架构。实验结果表明,定点量化后跟踪算法相比于原算法的平均精度损失不超过4.57%,FPGA部署后前向推理耗时仅为CPU的16.15%,功耗仅为CPU的13.7%。Complex background target tracking algorithm based on the embedded platform plays an important role in intelligent video surveillance equipment,UAV tracking,etc.Convolutional neural network is accurate and robust on tracking problems,but the algorithm based on convolution features has high computational complexity,and is limited by the area and power consumption of the embedded platform,so the real-time performance is difficult to meet the requirements of embedded platform application scenarios.For the difficulties of high computational complexity and large number of stored parameters of the tracking algorithm based on convolutional features,a hardware acceleration architecture for complex background target tracking based on convolutional neural networks using FPGAs is proposed.A channel-parallel based convolutional layer acceleration architecture is designed by using KL relative entropy for fixed-point quantization of the target tracking algorithm Siamese-FC.The experimental results show that the average accuracy loss of the tracking algorithm after fixedpoint quantization is more than 4.57%compared with the original algorithm,the forward inference time consumption after FPGA deployment is only 16.15%,and the power consumption is only 13.7%of CPU.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.225.235.215