Opportunities and challenges for the biodegradable magnesium alloys as next-generation biomaterials  被引量:38

在线阅读下载全文

作  者:Wenjiang Ding 

机构地区:[1]Shanghai Jiao Tong University,Shanghai 200240,China

出  处:《Regenerative Biomaterials》2016年第2期79-86,共8页再生生物材料(英文版)

基  金:This work is financially supported by Science and Technology Commission of Shanghai Municipality(11DJ1400300,14DZ1940800);Ministry of Science and Technology of China(2012BAI18B01,2015AA033603).

摘  要:In recent years,biodegradable magnesium alloys emerge as a new class of biomaterials for tissue engineering and medical devices.Deploying biodegradable magnesium-based materials not only avoids a second surgical intervention for implant removal but also circumvents the long-term foreign body effect of permanent implants.However,these materials are often subjected to an uncontrolled and fast degradation,acute toxic responses and rapid structural failure presumably due to a localized,too rapid corrosion process.The patented Mg-Nd-Zn-based alloys(JiaoDa BioMg[JDBM])have been developed in Shanghai Jiao Tong University in recent years.The alloy series exhibit lower biodegradation rate and homogeneous nanophasic degradation patterns as compared with other biodegradable Mg alloys.The in vitro cytotoxicity tests using various types of cells indicate excellent biocompatibility of JDBM.Finally,bone implants using JDBM-1 alloy and cardiovascular stents using JDBM-2 alloy have been successfully fabricated and in vivo long-term assessment via implantation in animal model have been performed.The results confirmed the reduced degradation rate in vivo,excellent tissue compatibility and long-term structural and mechanical durability.Thus,this novel Mg-alloy series with highly uniform nanophasic biodegradation represent a major breakthrough in the field and a promising candidate for manufacturing the next generation biodegradable implants.

关 键 词:biodegradable material magnesium alloys uniform corrosion orthopaedic implants cardiovascular stents 

分 类 号:TG1[金属学及工艺—金属学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象