考虑需求强度与群体差异的公路旅客出行行为异质性研究  被引量:7

Research on heterogeneity of road passenger travel behavior considering demand intensity and group differences

在线阅读下载全文

作  者:戢晓峰[1,2] 刘丁硕 陈方 JI Xiaofeng;LIU Dingshuo;CHEN Fang(Faculty of Traffic Engineering,Kunming University of Science and Technology,Kunming 650504,China;Yunnan Integrated Transport Development and Regional Logistics Management Think Tank,Kunming University of Science and Technology,Kunming 650504,China)

机构地区:[1]昆明理工大学交通工程学院,昆明650504 [2]昆明理工大学云南综合交通发展与区域物流管理智库,昆明650504

出  处:《北京交通大学学报》2021年第1期47-61,共15页JOURNAL OF BEIJING JIAOTONG UNIVERSITY

基  金:国家自然科学基金(42061030)。

摘  要:基于联网售票数据,提出公路旅客群体识别方法,建立了基于K-means聚类及决策树CHAID算法的公路旅客群体识别嵌套模型,提取了平峰与高峰时期旅客群体的细分规则及群体细分特征,并利用结构方程模型获取了需求强度对公路旅客出行行为异质性的影响机理.研究结果表明:平峰时期,购票方式、出行时刻及提前取票时间是划分旅客群体的主要因素.高峰时期,旅客出行计划性更强,提前16 h以上取票的旅客占比相对平峰时期高约2%;将需求强度等级由高至低划分为1至4级;需求强度提升将导致常规出行型旅客更倾向于人工购票,计划出行型旅客更倾向于网络购票;常规出行型旅客受票价的影响程度高于计划出行型旅客0.113%,揭示了常规出行型旅客对票价提高不敏感;计划出行型旅客的出行时刻选择几乎不受需求强度变化影响.Based on online ticketing data,the identification method of road passenger groups is proposed by establishing the nested model of road passenger group recognition based on K-means clustering and decision tree CHAID algorithm.And the classification rules and detailed characteristics of passengers between off-peak and peak periods are extracted.By introducing a structural equation model,the influence mechanism of road passenger demand intensity on the heterogeneity in travel behavior is obtained.The results show that in off-peak periods,ticket purchase methods,travel time,advance ticket collection time are the main factors that distinguish different passenger groups.While in peak period,passengers are more well-planned,with about 2%more passengers collecting tickets over 16 hours in advance than during off-peak periods.The demand intensity is divided into four levels from 1 to 4;increased demand intensity will cause regular travel passengers preferring manual ticket purchases and planned travel passengers preferring online ticket purchases.Passengers travelling regularly are more affected by fares than those planning to travel,by about 0.113%,suggesting that passengers travelling regularly are less sensitive to fare increases and that planned passengers keep their travel time unaffected by the changing demand intensity.

关 键 词:交通运输工程 出行行为异质性 群体识别 需求强度 联网售票数据 

分 类 号:U491.1[交通运输工程—交通运输规划与管理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象