检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Fengling MAO Bingpeng MA Hong CHANG Shiguang SHAN Xilin CHEN
机构地区:[1]School of Information Science and Technology,ShanghaiTech University,Shanghai 201210,China [2]Key Laboratory of Intelligent Information Processing of Chinese Academy of Sciences(CAS),Institute of Computing Technology,Chinese Academy of Sciences,Beijing 100190,China [3]University of Chinese Academy of Sciences,Beijing 100049,China [4]CAS Center for Excellence in Brain Science and Intelligence Technology,Shanghai 200031,China
出 处:《Science China(Information Sciences)》2021年第2期15-26,共12页中国科学(信息科学)(英文版)
基 金:supported in part by National Natural Science Foundation of China(Grant Nos.61876171,61976203);Fundamental Research Funds for the Central Universities。
摘 要:For a given text,previous text-to-image synthesis methods commonly utilize a multistage generation model to produce images with high resolution in a coarse-to-fine manner.However,these methods ignore the interaction among stages,and they do not constrain the consistent cross-sample relations of images generated in different stages.These deficiencies result in inefficient generation and discrimination.In this study,we propose an interstage cross-sample similarity distillation model based on a generative adversarial network(GAN)for learning efficient text-to-image synthesis.To strengthen the interaction among stages,we achieve interstage knowledge distillation from the refined stage to the coarse stages with novel interstage cross-sample similarity distillation blocks.To enhance the constraint on the cross-sample relations of the images generated at different stages,we conduct cross-sample similarity distillation among the stages.Extensive experiments on the Oxford-102 and Caltech-UCSD Birds-200-2011(CUB)datasets show that our model generates visually pleasing images and achieves quantitatively comparable performance with state-of-the-art methods.
关 键 词:generative adversarial network(GAN) text-to-image synthesis knowledge distillation
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15