基于多机器学习方法联合的公共卫生风险预测研究——以兰州市流感预测为例  被引量:3

Public Health Risk Forecasting with Multiple Machine Learning Methods Combined:Case Study of Influenza Forecasting in Lanzhou,China

在线阅读下载全文

作  者:柴国荣[1,2,3] 王斌[1,2,3] 沙勇忠[1,2,3] Chai Guorong;Wang Bin;Sha Yongzhong(School of Management,Lanzhou University,Lanzhou 730000,China;Research Center for Hospital Management,Lanzhou University,Lanzhou 730000,China;Research Center for Emergency Management,Lanzhou University,Lanzhou 730000,China)

机构地区:[1]兰州大学管理学院,兰州730000 [2]兰州大学医院管理研究中心,兰州730000 [3]兰州大学应急管理研究中心,兰州730000

出  处:《数据分析与知识发现》2021年第1期90-98,共9页Data Analysis and Knowledge Discovery

基  金:国家自然科学基金项目(项目编号:71472079);国家中央高校基本科研业务费重点项目(项目编号:18LZUJBWZD07);教育部哲学社会科学研究重大课题攻关项目(项目编号:16JZD023)的研究成果之一。

摘  要:【目的】探索应用机器学习预测流感这类公共卫生风险的可行性和有效性。【方法】首先,收集2009-2016年兰州市的流感和气象数据,拆分成2009-2015年和2016年两组,分别作为训练和验证数据;然后,分别基于SARIMA、Kalman Filter和VAR建立三种机器学习预测方法,并设计两种多方法联合预测策略;最后,评估、比较上述方法(策略)的预测性能。【结果】在设定的全期、爆发期和稳定期三种场景下,SARIMA、VAR和Kalman Filter方法的预测效果分别为最佳(RMSE分别为11.68、19.23和1.60;R^(2)分别为0.932、0.923和0.956);多方法联合策略可进一步提升三种场景下的预测效果,其中联合策略Comb_2的表现更好(RMSE分别为10.82、14.68和1.38;R^(2)分别为0.942、0.934和0.963)。【局限】相关数据限制,主要考虑了气象一类外部相关因素。【结论】应用机器学习预测流感等公共卫生风险具有可行性和有效性,且潜力巨大。但目前面临的主要困境是多源数据缺乏,需要从技术、组织和制度层面打破数据壁垒,推动数据共享与开放。[Objective] This study tries to explore the practicability and effectiveness of forecasting public health risks with machine learning, taken influenza as an example. [Methods] First, we collected the data on influenza and meteorological factors during 2009 to 2016 in Lanzhou, China. Data from the year 2009 to 2015 were used as the training data and 2016 as the testing data. Then, based on SARIMA, Kalman Filter, and VAR, three machine learning methods for influenza prediction were put forward, respectively. Moreover, we designed two multimethod combined forecasting strategies. Finally, the forecasting performance of the above methods(strategies)was carefully evaluated and compared. [Results] The SARIMA, VAR, and Kalman Filter achieved best predict performance in the whole period(WP), outbreak period(OP), and stabilization period(SP), with RMSE at 11.68,19.23, 1.60, and R^(2) at 0.932, 0.923, 0.956, respectively. The forecasting performance among all three scenarios was improved by our multi-method combined strategies, in which Comb_2 has better performance, with RMSE at10.82, 14.68, 1.38, and R^(2) at 0.942, 0.934, 0.963, respectively. [Limitations] Limited by the data, this study just considered meteorology factors as external factors. [Conclusions] Predicting public health risks(such as influenza) with machine learning is practicable, effective and has great potential. But a lack of multi-source data is the major dilemma. Therefore, to promote the open exchange and sharing of data, barriers should be broken at the technical, organizational, and institutional levels.

关 键 词:机器学习 流感预测 公共卫生风险 风险预测 

分 类 号:TP181[自动化与计算机技术—控制理论与控制工程] R511.7[自动化与计算机技术—控制科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象