检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:杜锦程 吴福森 陈丙三 DU Jincheng;WU Fusen;CHEN Bingsan(School of Mechanical and Automotive Engineering, Fujian University of Technology, Fuzhou 350118, China;Quanzhou Branch of Fujian Special Inspection Institute for Special Equipment Inspection, Quanzhou 362011, China)
机构地区:[1]福建工程学院机械与汽车工程学院,福建福州350118 [2]福建省特种设备检验研究院泉州分院,福建泉州362011
出 处:《福建工程学院学报》2021年第1期12-18,共7页Journal of Fujian University of Technology
基 金:国家自然科学基金资助项目(51305079);福建省自然科学基金项目(2020J01874,2020J01869)。
摘 要:以探索概率筛振动参数与筛分效率之间的关系,为概率筛结构的进一步改进提供指导意义为研究目的,将LS-SVM分类算法引入自同步概率筛筛分效率预测建模,探讨LS-SVM建模的可行性。基于各个不同的应用领域,可以构造不同的核函数,针对核函数需要优化特征参数的问题,应用网格搜索和交叉验证算法,对核参数的选择进行优化。通过研究得出用多项式(Poly)核函数建模对预测样本的最高预测识别率达到96.7%,采用RBF核函数建模对预测样本达到了零错分率,表明将LS-SVM算法引入概率筛筛分效率预测建模是可行的。In order to explore the relationship between the vibration parameters of probabilistic screening and the screening efficiency,and to provide guidance for the further improvement of the probabilistic screening structure,LS-SVM classification algorithm was introduced into the self-synchronous probabilistic screening efficiency prediction modeling,and the feasibility of LS-SVM modeling was discussed.Based on different application fields,different kernel functions can be constructed.To solve the problem that kernel functions need to optimize characteristic parameters,grid search and cross validation algorithms were applied to optimize the selection of kernel parameters.Results show that the highest predictive recognition rate of the predicted samples by using Poly kernel function modeling is 96.7%,and the zero error rate of the predicted samples by using RBF kernel function modeling indicates that it is feasible to introduce LS-SVM algorithm into probabilistic screening efficiency prediction modeling.
关 键 词:概率筛 LS-SVM分类算法 核函数 筛分效率预测建模
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.4