基于用户评论分析的网络学术信息资源评价体系模型研究  被引量:5

Research on Evaluation System Model of Network Academic Information Resources Based on User Comments Analysis

在线阅读下载全文

作  者:刘冰[1] 庞琳 Liu Bing

机构地区:[1]天津师范大学管理学院,天津300387

出  处:《情报理论与实践》2021年第3期172-177,163,共7页Information Studies:Theory & Application

基  金:国家社会科学基金重点项目“基于用户与情境视域的网络学术信息资源评价研究”的成果之一,项目编号:14ATQ007。

摘  要:[目的/意义]从用户角度,通过用户评价内容挖掘构建形成网络学术信息资源评价模型,为网络学术信息资源评价提供一个新的视角,并为其更进一步深入研究奠定基础。[方法/过程]文章在利用爬虫工作自动抓取三个知名学术网站用户评论的语料库基础上,运用数据挖掘研究方法对评论数据进行分词、聚类,根据词间与词对关系,构建形成评价体系模型。[结果/结论]基于用户评论挖掘构建形成涵盖资源内容属性、资源外部特征、网络功能属性、获取过程、用户体验五个维度的网络学术信息资源评价体系模型。该体系模型反映出科学用户在利用新兴网络学术信息资源过程中对资源自身属性和平台规范性的关切,是用户与利用正式学术信息资源的本质区别。[Purpose/significance]From the perspective of users,this paper builds a network academic information resource evaluation criteria system by mining user evaluation content,which provides a new perspective for network academic information resource evaluation and lays a foundation for further research.[Method/process]Based on the user reviews on three well-known academic websites which obtained by the network mining,this paper uses data mining research methods to segment and cluster the comment data,and builds an evaluation criteria system based on the relationship between words and words.[Result/conclusion]Based on user comment mining,this paper constructs a network academic information resource evaluation system that covers five dimensions:resource content attribute,resource external feature,network function attribute,and acquisition process and user experience.The system reflects the concerns of scientific users on the resource’s own attributes and platform norms in the process of utilizing emerging network academic information resources.This is the essential difference between users’use of online academic information resources and formal academic information resources.

关 键 词:网络学术信息资源 用户评论挖掘 评价体系 评价指标 

分 类 号:G353.1[文化科学—情报学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象