Strong Goldbach Conjecture and Generalized Moser-Type Inequalities  

在线阅读下载全文

作  者:ZHANG Shaohua 

机构地区:[1]School of Mathematics and Statistics,Yangtze Normal University,Chongqing 408102,China

出  处:《Wuhan University Journal of Natural Sciences》2021年第1期15-18,共4页武汉大学学报(自然科学英文版)

基  金:the National Natural Science Foundation of China(11401050);Scientific Research Innovation Team Project Affiliated to Yangtze Normal University(2016XJTD01)。

摘  要:In this paper,we consider the generalized Moser-type inequalities,sayφ(n)≥kπ(n),where k is an integer greater than 1,φ(n)is Euler function andπ(n)is the prime counting function.Using computer,Pierre Dusart’s inequality onπ(n)and Rosser-Schoenfeld’s inequality involvingφ(n),we give all solutions ofφ(n)=2π(n)andφ(n)=3π(n),respectively.Moreover,we obtain the best lower bound that Moser-type inequalitiesφ(n)>kπ(n)hold for k=2,3.As consequences,we show that every even integer greater than 210 is the sum of two coprime composite,every odd integer greater than 175 is the sum of three pairwise coprime odd composite numbers,and every odd integer greater than 53 can be represented as p+x+y,where p is prime,x and y are composite numbers satisfying that p,and x and y are pairwise coprime.Specially,we give a new equivalent form of Strong Goldbach Conjecture.

关 键 词:Strong Goldbach Conjecture pairwise coprime Euler totient function prime-counting function 

分 类 号:O156[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象