检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:ZHANG Shaohua
机构地区:[1]School of Mathematics and Statistics,Yangtze Normal University,Chongqing 408102,China
出 处:《Wuhan University Journal of Natural Sciences》2021年第1期15-18,共4页武汉大学学报(自然科学英文版)
基 金:the National Natural Science Foundation of China(11401050);Scientific Research Innovation Team Project Affiliated to Yangtze Normal University(2016XJTD01)。
摘 要:In this paper,we consider the generalized Moser-type inequalities,sayφ(n)≥kπ(n),where k is an integer greater than 1,φ(n)is Euler function andπ(n)is the prime counting function.Using computer,Pierre Dusart’s inequality onπ(n)and Rosser-Schoenfeld’s inequality involvingφ(n),we give all solutions ofφ(n)=2π(n)andφ(n)=3π(n),respectively.Moreover,we obtain the best lower bound that Moser-type inequalitiesφ(n)>kπ(n)hold for k=2,3.As consequences,we show that every even integer greater than 210 is the sum of two coprime composite,every odd integer greater than 175 is the sum of three pairwise coprime odd composite numbers,and every odd integer greater than 53 can be represented as p+x+y,where p is prime,x and y are composite numbers satisfying that p,and x and y are pairwise coprime.Specially,we give a new equivalent form of Strong Goldbach Conjecture.
关 键 词:Strong Goldbach Conjecture pairwise coprime Euler totient function prime-counting function
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249