检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Guangfu Wu Wenyi Zheng Yun Li Mengyuan Zhou
机构地区:[1]School of Communication and Information Engineering,Chongqing University of Posts and Telecommunications Chongqing,400065,China [2]Chongqing Key Laboratory of Mobile Communications Technology,Chongqing University of Posts and Telecommunications,400065,China
出 处:《China Communications》2021年第4期166-181,共16页中国通信(英文版)
基 金:supported in part by the Science and Technology Research Program of the National Science Foundation of China(No.61671096);Chongqing Research Program of Basic Science and Frontier Technology(No.cstc2017jcyj BX0005);Chongqing Municipal Education Commission(No.KJQN201800642);Doctoral Student Training Program(No.BYJS2016009)。
摘 要:Non-orthogonal multiple access is a promising technique to meet the harsh requirements for the internet of things devices in cognitive radio networks.To improve the energy efficiency(EE)of the unlicensed secondary users(SU),a power allocation(PA)algorithm with polynomial complexity is investigated.We first establish the feasible range of power consumption ratio using Karush-Kuhn-Tucker optimality conditions to support each SU’s minimum quality of service and the effectiveness of successive interference cancellation.Then,we formulate the EE optimization problem considering the total transmit power requirements which leads to a non-convex fractional programming problem.To efficiently solve the problem,we divide it into an inner-layer and outer-layer optimization sub-problems.The inner-layer optimization which is formulated to maximize the sub-carrier PA coefficients can be transformed into the difference of convex programming by using the first-order Taylor expansion.Based on the solution of the inner-layer optimization sub-problem,the concave-convex fractional programming problem of the outer-layer optimization sub-problem may be converted into the Lagrangian relaxation model employing the Dinkelbach algorithm.Simulation results demonstrate that the proposed algorithm has a faster convergence speed than the simulated annealing algorithm,while the average system EE loss is only less than 2%.
关 键 词:cognitive radio-non-orthogonal multiple access(CR-NOMA) power allocation energy efficiency internet of things(IoT)
分 类 号:TP391.44[自动化与计算机技术—计算机应用技术] TN929.5[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117

