检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:徐伟锋 戴明宏 朱丹[1] 马方毅 XU Weifeng;DAI Minghong;ZHU Dan;MA Fangyi(Shaoxing Vocational&Technical College,Shaoxing,441002,China)
出 处:《棉纺织技术》2021年第4期80-84,共5页Cotton Textile Technology
基 金:绍兴职业技术学院2020年校级专项科研项目(SZK034)。
摘 要:探讨基于机器视觉的织物疵点检测应用现状及发展趋势。介绍了织物疵点视觉检测系统的基本结构和工作原理。从图像预处理算法、图像分割算法、织物疵点特征提取算法等3个方面,剖析了各种算法在织物疵点检测中的实际应用情况。总结了不同算法的检测效果和存在的不足之处,并对织物疵点检测的未来发展进行展望。认为:结合人工智能、多传感器的技术,构建稳定可靠的基于机器视觉的织物疵点检测系统可进一步提高疵点检测的准确性。Application status and development trend of fabric defect detection based on machine vision were discussed.Basic structure and working principle of fabric defects vision inspection system were introduced.From three aspects,image preprocessing algorithm,image segmentation algorithm and fabric defect feature extraction algorithm,actual application of various algorithms in fabric defect detection was analyzed.Detection effects and shortcomings of different algorithms were summarized.Future development of fabric defect detection was look ahead.It is considered that combining artificial intelligence and multi-sensor technology to build stable and reliable fabric defect detection system based on machine vision,which can further improve accuracy of defect detection.
关 键 词:纺织品 机器视觉 织物疵点 检测算法 图像处理技术
分 类 号:TS103.6[轻工技术与工程—纺织工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15