Fastener region location method based on gray-scale mutation  

基于灰度突变的扣件区域定位方法研究

在线阅读下载全文

作  者:LV Banghuan MIN Yongzhi HUO Hongtao 吕邦欢;闵永智;霍洪涛(兰州交通大学自动化与电气工程学院,甘肃兰州730070)

机构地区:[1]School of Automation and Electrical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China

出  处:《Journal of Measurement Science and Instrumentation》2021年第1期98-106,共9页测试科学与仪器(英文版)

基  金:National Natural Science Foundation of China(Nos.61616202,61461203);Ministry of Education Innovation Team Development Plan(No.IRT_16R36);Plateau Information Engineering and Control Key Practice Laboratory Open Project Fund of Gansu Province(No.201611105)。

摘  要:Rail fastener positioning method has high requirements for image quality and positioning accuracy.Therefore,a rail fastener positioning method based on gray mutation is proposed.Firstly,the image is denoised by an improved median filter.Then,according to the characteristics of image frequency domain,the image is decomposed by wavelet transfrom to extract low-frequency component,and the low-frequency component is filtered and processed by gamma transformation to reduce the influence of natural environment factors on image quality.After that,according to the change rule of gray-scale values of different regions in the image,the gray-scale mutation in column and line directions of the image is statistically analyzed,and then the rail surface and the sleeper are located.Finally,the fastener area is accurately located by using the position relationship of the rail surface,the sleeper and the fastener in the image.The experimental results show that the positioning accuracy of the proposed method is 93.19%,which can quickly and effectively locate the fastener region,and has strong environmental adaptability,robustness and practicability.

关 键 词:fastener positioning gray-scale mutation median filtering gamma transformation wavelet decomposition mutation statistics 

分 类 号:U21[交通运输工程—道路与铁道工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象