卡车与无人机联合配送模式下物流调度的优化研究  被引量:24

Research on Logistics Scheduling Optimization Problem with Truck-Drone Joint Delivery

在线阅读下载全文

作  者:郭秀萍[1] 胡运霞 GUO Xiuping;HU Yunxia(School of Economics and Management,Southwest Jiaotong University,Chengdu 610031,China)

机构地区:[1]西南交通大学经济管理学院,四川成都610031

出  处:《工业工程与管理》2021年第1期1-8,共8页Industrial Engineering and Management

基  金:国家自然科学基金项目(71471151)。

摘  要:无人机以其体积小、成本低、速度快、直线飞行等优势被越来越多地用于农村电商物流配送。考虑无人机续航里程约束和装载量限制,提出一种卡车-无人机联合配送模式,并设计三阶段规划求解方法。首先,采用改进的K-means聚类算法对客户进行分类,将聚类中心作为卡车配送点;第二阶段,基于旅行商问题模型确定卡车经过所有配送点的最优行驶路线;第三阶段,构建每个配送点续航和容量约束下无人机的路径优化问题并求解,实现以较低成本将货物送达客户;最后,采用C++编程和CPLEX实现提出方法。算例仿真结果说明:卡车-无人机联合配送模式较卡车单独配送模式以及文献中提出的联合配送模式能够更高效地完成货物配送。Drones have been increasingly used in rural e-commerce logistics delivery due to their advantages of small size,low cost,fast speed and straight flight.Considering the short-range constraint and load limit of drone, a truck-drone joint delivery mode was proposed, and a three-stage programming solution method was designed. The three-stage solution method firstly adopted the improved k-means clustering algorithm to classify customers,and took the clustering center as the truck delivery point. In the second stage,the optimal delivery route of trucks passing through all delivery points was determined based on the traveling salesman problem model.In the third stage,the route optimization problem of drones under the endurance and capacity constraints of each delivery point was constructed and solved,aiming to delivered goods to customers at a lower cost. Finally,C++ and CPLEX were adopted to realize the proposed method. The simulation results of the instances show that the truck-drone joint delivery mode can complete the goods delivery more effectively than a separate truck delivery mode and a delivery mode proposed in the literature.

关 键 词:卡车-无人机联合配送 三阶段规划 改进的K-means聚类算法 

分 类 号:F252[经济管理—国民经济]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象