检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:杨淼 王海文 胡珂 殷歌 胡金通 YANG Miao;WANG Hai-wen;HU Ke;YIN Ge;HU Jin-tong(School of Electronic Engineering,Jiangsu Ocean University,Lianyungang Jiangsu 222005,China;Pilot Qingdao National Laboratory for Marine Science and Technology,Qingdao Shandong 266237,China)
机构地区:[1]江苏海洋大学电子工程学院,江苏连云港222005 [2]青岛海洋科学与技术试点国家实验室,山东青岛266237
出 处:《图学学报》2021年第1期59-64,共6页Journal of Graphics
基 金:江苏省基础研究计划(自然科学基金)(BK20191469);江苏科技大学海洋装备研究院高技术协同创新项目(HZ20190005);江苏省研究生科研创新项目(KYCX19_2314,KYCX20_2768,KYCX20_2769);国家自然科学基金青年项目(61601194)。
摘 要:针对退化的水下图像在高级视觉分析任务中无法进行有效的目标检测及识别的问题,提出了一种通过色彩补偿和对比度拉伸,HSV空间γ校正和亮度通道去模糊系列方法实现了对水下图像的色彩校正、色彩对比度、饱和度和细节清晰度的综合提高。其中,提出了基于高斯滤波的亮度通道去散射方法,并对典型水体水下图像综合增强参数进行了分析。实验对比了综合增强方法和其他增强方法对偏蓝、偏绿、偏黄、白色近岸浅滩水下图像的处理结果并通过目标检测网络对7种算法增强后的水下图像数据集进行训练与测试,对比了平均水下目标识别准确率和检测到的目标数量与实际目标数量的比值来评估各个增强算法对于水下目标识别和检测任务中的作用。实验表明,与现有方法相比,该算法不仅可以有效地实现各类水下图像清晰度和色彩增强,适用范围广,而且可以有效地提高水下图像目标识别任务的准确率和检测数量。A novel underwater image compositive enhancement method was proposed to improve the quality of underwater images,thereby synthetically boosting the performance of high-level visual analysis.A series of operations,including color compensation and correction,gamma correction in the HSV space,and final brightness de-blurring,were combined to realize color restoration,contrast and clarity improvements for underwater images.A method of brightness channel de-scattering based on Gauss filtering was proposed,and the comprehensive enhancement parameters of typical underwater images were analyzed.The experiments in this paper compared the processing results of the compositive enhancement method and other enhancement methods for the bluish,greenish,yellowish,and whitish nearshore shoal underwater images,and trained and tested the underwater image data sets enhanced by seven algorithms through the target detection network.Comparisons were also made between the average underwater target recognition accuracy rate and the ratio of the number of detected targets to the actual target number,so as to evaluate the effect of each enhancement algorithm on underwater target recognition and detection tasks.The experiment results demonstrate that the proposed method can achieve substantial image clarity improvement and color restoration,and is widely applicable,compared with the existing methods.At the same time,it can effectively improve the accuracy of underwater target recognition and the number of the detected objects.
关 键 词:水下图像增强 高斯滤波 亮度通道去散射 目标检测 水下图像质量评价
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.148.210.23