检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王晓东[1] 马旭颖 WANG Xiaodong;MA Xuying(Warship Automatic System Division,Shanghai Ship and Shipping Research Institute,Shanghai 200135,China)
机构地区:[1]上海船舶运输科学研究所舰船自动化系统事业部,上海200135
出 处:《上海船舶运输科学研究所学报》2021年第1期49-53,共5页Journal of Shanghai Ship and Shipping Research Institute
摘 要:为在船舶设备发生故障时能准确、及时地定位故障发生根源,保证船舶安全、经济运行,采用大数据分析方法和支持向量机(Support Vector Machine,SVM)模型算法对船舶设备进行故障诊断,提前预测可能发生的故障。以船舶柴油机滑油压力低故障为例,应用Python语言,通过SVM模型算法预测该故障的发生概率。结果表明,在已采集的船舶数据样本的训练集和测试集上,数据拟合和故障预测的效果十分理想,预测故障发生的准确率较高。The SVM(Support Vector Machine)model algorithm for predicting the probability of low lubrication oil pressure in a diesel engine is developed with Python.The model is trained with a training data set and verified with a test data set.Satisfactory data fitting and fault prediction are demonstrated.
关 键 词:大数据分析 支持向量机模型算法 PYTHON语言 船舶设备故障诊断
分 类 号:U676.42[交通运输工程—船舶及航道工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.147