Networked Learning Predictive Control of Nonlinear Cyber-Physical Systems  被引量:3

在线阅读下载全文

作  者:LIU Guo-Ping 

机构地区:[1]Department of Artificial Intelligence and Automation,Wuhan University,Wuhan 430072,China

出  处:《Journal of Systems Science & Complexity》2020年第6期1719-1732,共14页系统科学与复杂性学报(英文版)

基  金:the National Natural Science Foundation of China under Grant No.61773144。

摘  要:Cyber-physical systems integrate computing,network and physical environments to make the systems more efficient and cooperative,and have important and extensive application prospects,such as the Internet of things.This paper studies the control problem of nonlinear cyber-physical systems with unknown dynamics and communication delays.A networked learning predictive control scheme is proposed for unknown nonlinear cyber-physical systems.This scheme recursively learns unknown system dynamics,actively compensates for communication delays and accurately tracks a desired reference.Learning multi-step predictors are presented to predict various step ahead outputs of the unknown nonlinear cyber-physical systems.The optimal design of controllers minimises a performance cost function which measures the tracking error predictions and control input increment predictions.The system analysis leads to the stability criteria of closed-loop nonlinear cyber-physical systems employing the networked learning predictive control scheme.An example illustrates the outcomes of the proposed scheme.

关 键 词:Cyber-physical systems learning control networked predictive control nonlinear systems 

分 类 号:TN91[电子电信—通信与信息系统] O231[电子电信—信息与通信工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象