检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:谢军 江朝晖[1,2] 李博 饶元 张武[1,2] Xie Jun
机构地区:[1]安徽农业大学信息与计算机学院,安徽合肥230036 [2]智慧农业技术与装备安徽省重点实验室,安徽合肥230036
出 处:《江苏农业科学》2021年第6期176-182,共7页Jiangsu Agricultural Sciences
基 金:安徽高校自然科学研究重大项目(编号:KJ2019ZD20);智慧农业技术与装备安徽省重点实验室自主创新研究基金(编号:APKLSATE2019X002);安徽省科技攻关项目(编号:1804a07020108、201904a06020056)。
摘 要:为提高小样本茶树病害识别的准确率,提出一种基于2次迁移模型的卷积神经网络茶树病害图像识别方法。首先将ResNet模型在ImageNet数据集上进行预训练,然后将预训练模型对植物病害数据集进行参数迁移训练,最后将迁移学习训练后的模型对扩充后的小样本茶树病害数据集进行2次参数迁移训练。结果表明,扩充后的数据集识别准确率较原数据集提高2.32%,再进行2次迁移学习后识别准确率又提高6.38%。通过调整训练超参数,对茶红锈藻病、炭疽病、茶网饼病、圆赤星病、藻斑病等5种茶树病害图像的识别准确率高达96.64%。在对5种茶树病害进行验证时,验证样本识别率与常规深度学习相比由93%提高至98%。2次迁移学习能够有效提高在小样本茶树病害识别下模型的识别能力,对实用化茶树病害识别具有重要的参考意义。
关 键 词:茶树病害 图像识别 小样本 二次迁移模型 残差网络
分 类 号:S435.711[农业科学—农业昆虫与害虫防治] S126[农业科学—植物保护]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.171