检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈皓 李广 刘洋 强永乾[3] CHEN Hao;LI Guang;LIU Yang;QIANG Yongqian(School of Computer,Xi’an University of Posts&Telecommunications,Xi’an 710121,China;Shaanxi Key Laboratory of Network Data Analysis and Intelligent Processing,Xi’an University of Post and Telecommunications,Xi’an 710121,China;First Affiliated Hospital of Xi’an Jiaotong University,Xi’an 710061,China)
机构地区:[1]西安邮电大学计算机学院,西安710121 [2]陕西省网络数据分析与智能处理重点实验室,西安710121 [3]西安交通大学第一附属医院,西安710061
出 处:《电子与信息学报》2021年第4期992-1002,共11页Journal of Electronics & Information Technology
基 金:国家自然科学基金(61876138,61203311);陕西省自然科学基金(2019JM-365);陕西省教育厅自然科学专项(17JK0701);西安邮电大学研究生创新基金(CXJJ2017036)。
摘 要:针对磁共振图像(MRI)进行脑胶质瘤检测及病灶分割对临床治疗方案的选择和手术实施过程的引导都有着重要的价值。为了提高脑胶质瘤的检测效率和分割准确率,该文提出了一种两阶段计算方法。首先,设计了一个轻量级的卷积神经网络,并通过该网络完成MR图像中肿瘤的快速检测及大致定位;接着,通过集成学习过程对肿瘤周围水肿、肿瘤非增强区、肿瘤增强区和正常脑组织等4种不同区域进行分类与彼此边界的精细分割。为提高分割的准确率,在MR图像中提取了416维影像组学特征并与128维通过卷积神经网络提取的高阶特征进行组合和特征约简,将特征约简后产生的298维特征向量用于分类学习。为对算法的性能进行验证,在BraTS2017数据集上进行了实验,实验结果显示该文提出的方法能够快速检测并定位肿瘤,同时相比其它方法,整体分割精度也有明显提升。The glioma detection and focus segmentation in Magnetic Resonance Imaging(MRI)has important value for the therapeutic schedule selection and the surgical operations.In order to improve the detection efficiency and segmentation accuracy for glioma,this paper proposes a two-stage calculating method.First,a light convolutional neural network is designed to implement rapidly detection and localization for the glioma in MR images.Then,the peritumoral edema,non-enhancing tumor,enhancing tumor,and normal are classified and segmented from each other through an Ensemble Learning(EL)process.In order to improve the accuracy of segmentation,416 radiomics features extracted from multi-modal MR images and 128 CNN features extracted by a convolutional neural network are mixed.The feature vector consisting of 298 features for classification learning are formed after a feature reduction process.In order to verify the performance of the proposed algorithm,experiments are carried out on the BraTS2017 dataset.The experimental results show that the proposed method can quickly detect and locate the tumor.The overall segmentation accuracy is improved distinctly with respect to 4 state-of-the-art approaches.
分 类 号:TN911.73[电子电信—通信与信息系统] TP391.41[电子电信—信息与通信工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.192