检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:杨妮 陈丽丽 YANG Ni;CHEN Li-li(School of Applied Sciences, Harbin University of Science and Technology, Harbin 150080, China)
出 处:《哈尔滨理工大学学报》2021年第1期139-143,共5页Journal of Harbin University of Science and Technology
基 金:国家自然科学基金(11401141);黑龙江省高校青年创新人才培养计划(UNPYSCT-2017078);黑龙江省博士后科研启动基金(LBH-Q18067).
摘 要:赋有向图的度量空间相比于一般的度量空间,在空间结构上更为复杂,有向图本身并不具有线性结构,在探究映射不动点的逼近问题上难度相对较大,从而受到了众多学者的广泛关注。首次通过在该空间中引入凸结构,给出了赋有向图凸度量空间的概念,并在该空间中得到G-单调非扩张映射在Mann迭代下生成序列的收敛性定理,并给出反例说明Mann迭代下生成序列不一定收敛到G-单调非扩张映射的不动点。Compared to the general metric space,the metric space endowed with a directed graph is more complex in space structure,and the directed graph itself does not have a linear structure,and it is relatively difficult to explore the problems of the fixed points of the mappings.In this paper,the convex structure is introduced in the metric space endowed with a directed graph for the first time,and the convex metric spaces endowed with a directed graph is defined.Moreover,the convergence theorem of the sequence which is generated by the Mann iterative algorithm of G-monotone nonexpansive mappings is obtained.Furthermore,an example is given to illustrate that the sequence generated by Mann iteration does not necessarily converge to the fixed point of G-monotone nonexpansive mapping.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.200