检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:何重航 刘佳琪[1,2] 王宪栋 刘洪艳[1,2] 高路[1,2] He Zhong-hang;Liu Jia-qi;Wang Xian-dong;Liu Hong-yan;Gao Lu(Beijing Institute of Space Long March Vehicle,Beijing,100076;National Key Laboratory of Science and Technology on Test Physics and Numerical Mathematics,Beijing,100076;PLA 61336,Beijing,100094)
机构地区:[1]北京航天长征飞行器研究所,北京100076 [2]试验物理与计算数学国家重点实验室,北京100076 [3]中国人民解放军61336部队,北京100094
出 处:《导弹与航天运载技术》2021年第2期121-126,共6页Missiles and Space Vehicles
摘 要:针对雷达信号识别中因新信号数据与训练数据的样本差异,导致卷积网络模型识别率下降的问题,提出一种基于卷积网络和对抗学习的雷达信号识别算法,提升模型对新样本的识别率。首先,依据时频变换理论,变换得到雷达信号时域-频域能量分布图像,以表征信号脉内调制特征;然后,结合深度可分离卷积的结构,构建卷积网络模型,并利用样本数据对模型进行预训练;最后,融合生成对抗网络的思想,网络模型采用对抗学习方式,根据输入新样本数据自适应调整、更新网络各层参数,提升模型对新样本特征提取能力。仿真结果表明,-4dB信噪比样本识别率由79.78%提升到90.67%,-2dB信噪比样本识别率由83.15%提升到91.00%,验证了算法的有效性。In the process of radar signal recognition,there is a recognition rate decline which caused by the divergence between the new samples and the training samples.To improve the radar signal recognition rate,a algorithm based on convolutional networks and adversarial learning is proposed.First,the signal samples are transformed into time-frequency domain energy distribution figures by the time-frequency transformation.Then,the convolutional networks are built by the depthwise separable convolution units and trained by the time-frequency figures.At last,the parameters of the model are fine-tuned and updated adaptively by adversarial learning with the new samples,the abilities of feature extraction and the recognition rates of the model are increased with the low SNR new samples.The simulation results shows that the recognition rate increased from 79.78%to 90.67%at-4dB SNR,and from 83.15%to 91.00%at-2dB SNR,which verifies the effectiveness of the algorithm.
关 键 词:雷达信号识别 卷积神经网络 生成对抗网络 时频变换
分 类 号:TN974[电子电信—信号与信息处理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3