检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张立峰[1] 朱炎峰 ZHANG Li-feng;ZHU Yan-feng(Department of Automation,North China Electric Power University,Baoding,Hebei 071003,China)
出 处:《计量学报》2021年第3期334-338,共5页Acta Metrologica Sinica
基 金:国家自然科学基金(61973115)。
摘 要:提出一种基于多目标优化并行感知器的极限学习机(MO-PLP-ELM)及电容层析成像(ECT)技术的两相流流型辨识算法。首先,为保证样本具有代表性,采用随机思想生成7类流型的训练及测试样本集;其次,对样本模型的电容数据归一化处理;最后,采用MO-PLP-ELM算法进行流型辨识,并与常用的BP神经网络、支持向量机、极限学习机及并行感知器改进极限学习机算法进行比较,结果表明,提出的MO-PLP-ELM算法其辨识率明显高于其它算法,平均辨识率达96.1%。Identification of two-phase flow based on multi-objective optimized parallel layer perceptrons extreme learning machine( MO-PLP-ELM) and electrical capacitance tomography( ECT) is proposed. Firstly,the random training method is used to generate the training and testing sets for the studied seven two-phase flow regimes,which assures the representativeness of the samples. Secondly,the capacitance data of the sample are normalized. Finally,the MO-PLP-ELM algorithm is used for flow regime identification,and the results are compared with those of BP neural network,support vector machine,extreme learning machine algorithms and extreme learning machine with parallel layer perceptrons. The results show that the average recognition rate can reach 96. 1% using MO-PLP-ELM,which is obviously higher than other algorithms.
关 键 词:计量学 两相流 多目标优化 并行感知器 极限学习机 电容层析成像 流型辨识
分 类 号:TB937[一般工业技术—计量学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.129.67.167