检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:邓春三 范旭浩 陶宇峰 焦玢璋 刘耘呈 曲良体[2] 赵扬 李欣[4] 熊伟 Deng Chunsan;Fan Xuhao;Tao Yufeng;Jiao Binzhang;Liu Yuncheng;Qu Liangti;Zhao Yang;Li Xin;Xiong Wei(School of Optical and Electronic Information,Wuhan National Laboratory for Optoelectronics,Huazhong University of Science and Technology,Wuhan,Hubei 430074,China;Department of Mechanical Engineering,State Key Laboratory of Tribology,Key Laboratory for Ad vanced Materials Processing Technology,Tsinghua University,Beijing 100084,China;School of Chemistry and Chem ical Engineering,Key Laboratory of Cluster Science,Min istry of Ed ucation,Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials,Beijing Institute of Technology,Beijing 100081,China;School of Mechanical Engineering,Laser Micro/Nano Fabrication Laboratory,Beijing Inustitute of Technology,Beijing 100081,China)
机构地区:[1]华中科技大学光学与电子信息学院,武汉光电国家研究中心,湖北武汉430074 [2]清华大学机械工程系,摩擦学国家重点实验室,教育部先进材料加工技术重点实验室,北京100084 [3]北京理工大学化学与化工学院,原子分子簇科学教育部重点实验室,光电转换材料北京市重点实验室,北京100081 [4]北京理工大学机械工程学院,激光微纳米加工实验室,北京100081
出 处:《中国激光》2021年第2期260-269,共10页Chinese Journal of Lasers
基 金:国家重点研发计划(2017YFB1104300);国家自然科学基金面上项目(61774067);中央高校基本科研业务费专项资金(2017KFXKJC001,2018KFYXKJC027);国家博士后面上基金(2017M622417)。
摘 要:开发了一种具备湿度刺激响应的复合水凝胶前驱体,并利用飞秒激光双光子聚合技术,对该智能响应水凝胶材料进行三维微纳成形制造。系统研究了激光功率和直写速度对该水凝胶材料成形中的线宽、墙高、溶胀度以及机械模量的影响规律,进一步通过对双层结构的有限元仿真和直写结构的设计,实现了三维微纳结构在外界环境刺激下的可控形变。理论计算和实验结果表明,激光功率和直写速度能实现对智能水凝胶材料三维成形和结构性能的精确调制,实现了双层水凝胶微结构的自主可编程形状转换,推动了微纳软体机器人和精细组织工程的发展。Objective Intelligent hydrogels usually exhibit environmental stimulus responsiveness when the external environment changes based on a unique three-dimensional network formed by cross-linking with chemical bonds or physical interactions,which makes it play an essential role in biomedicine,tissue engineering,soft robotics,and other fields.The femtosecond laser direct-writing(FLDW)technology based on the principle of two-photon nonlinear absorption has the advantages of nanoscale resolution.It also has three-dimensional modeling capabilities which are difficult to realize by UV lithography,electron beam etching,or nanoimprint.However,FLDW technology is still facing challenges in manufacturing smart micro-nanostructure devices,such as a single smart material system that meets the femtosecond laser manufacturing requirements.These include the lack of systematic research on the influence of FLDW process parameters on the manufacturing accuracy of intelligent materials and properties of manufactured materials,and lack of theoretical guidance in smart microstructures′design.In this study,we developed a composite intelligent hydrogel and applied the two-photon polymerization(TPP)technique to achieve four-dimensional microscale printing.We investigated the effects of femtosecond laser power and scanning speed on the line width,line height,swelling ratio,and hydrogels′mechanical modulus.We realized the controllable transformation of the three-dimensional micro-nanostructure under external environmental stimuli using the finite element simulation.Theoretical calculation and experimental results show that the controllable modulation of the three-dimensional shaping and structural performance of the smart hydrogel material can be realized using the laser parameters.However,the double-layer hydrogel microstructure can achieve the autonomous programmable transformation.This work laid a foundation for the development of soft-robots and tissue engineering.Methods First,we manufacture smart photoresist materials composed of sm
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.173