检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:杨超 李卫民[2] YANG Chao;LI Wei-min(School of FinTech,Shanghai Lixin University of Accounting and Finance,Shanghai 201209,China;School of Computer Engineering and Science,Shanghai University,Shanghai 200444,China)
机构地区:[1]上海立信会计金融学院金融科技学院,上海201209 [2]上海大学计算机科学与技术学院,上海200444
出 处:《小型微型计算机系统》2021年第3期491-495,共5页Journal of Chinese Computer Systems
基 金:国家重点研发计划项目(2017YFE0117500)资助;国家自然科学基金项目(61762002)资助。
摘 要:对金融客户进行准确分类是向其提供个性化服务的前提.针对某金融产品的销售需求,通过在线推销测试收集客户样本数据,并根据用户反馈标注样本.通过构造概率分布函数、离散化连续型数据两种方式构建贝叶斯分类器.利用交叉检验训练和测试分类算法,发现朴素贝叶斯分类算法性能优于高斯贝叶斯算法和逻辑回归算法.离散化连续型数据过程中结合分类偏好进行数据过滤,实验证明,异常数据滤除率参数对客户分类算法的准确性有显著影响,通过恰当设置该参数的取值,可以调节分类算法的分类偏好.方法对于提升金融产品销售效率,降低营销成本有参考价值.Classification of finance clients is prerequisite to provide individual service to them.In order to sell one financial production,clients information is collected through experimental online sale.Clients are marked according to their reaction to the financial production.Two Naive Bayesian classifiers are built by two methods.One is to construct probability distribution functions on clients sample data.The other is to discrete clients sample data.These classifiers are fitted and tested using cross validation on these finance clients data.The performance of Naive Bayesian classifier based on data discretization is the better than Gaussian Naive Bayesian classifier and Logical Regression classifier.In the process of data discretization some data is filtered according to classifier preference.Experiment show the ratio of filtering alternative data apart from the main data has an important influence on classifier accuracy.Classifier preferrence can be adjusted by setting appropriate value to the ratio.Naive Bayesian classifier based on data discretization is useful to promote finance production sale.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.136.159.203