检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:曾桢[1,2] 陈璟浩[2,3] 毛进 朱梦娴[5] ZENG Zhen;CHEN Jing-hao;MAO Jin;ZHU Meng-xian(Guizhou Key Laboratory of Big Data Statistical Analysis,Guizhou University of Finance and Economics,Guiyang 550000,China;Big Data Institute,Wuhan University,Wuhan 430072,China;School of Public Policy and Management,Guangxi University,Nanning 530000,China;Cetiter for Studies of Information Resources,Wuhan University,Wuhan 430072,China;HuaZhong University of Science and Technology Library,Wuhan 430074,China)
机构地区:[1]贵州财经大学贵州省大数据统计分析重点实验室,贵州贵阳550000 [2]武汉大学大数据研究院,湖北武汉430072 [3]广西大学公共管理学院,广西南宁530000 [4]武汉大学信息资源研究中心,湖北武汉430072 [5]华中科技大学图书馆,湖北武汉430074
出 处:《情报科学》2021年第3期120-127,135,共9页Information Science
基 金:国家自然科学基金项目“基于知识图谱的农产品价值链信息融合研究”(71964007);国家重点研发计划资助(2018YFC0806900);贵州省科技厅科技支撑计划“基于品质数据的农产品的可视化评估与检测系统”(黔科合支撑[2018]2368)。
摘 要:【目的/意义】对农产品贸易相关信息关联融合与有效管理将减少市场不确定性。为此本文基于语义网及相关信息融合技术,构建相关本体以整合多源信息,为政府决策,实际贸易提供支持。【方法/过程】面向农产品贸易及其信息资源特征,结合本体分层设计思想及方法;基于PROV-O本体,构建面向农产品贸易顶层本体;在顶层本体架构下,复用schema.org等13个现有领域本体,描述农产品贸易农产品、利益相关者、供需活动、物流活动语义结构,并基于语义相似度及推理方法,实现信息融合。【结果/结论】基于所构建本体框架,实现对多源信息融合。同时基于OntoQA指标评估本体具有较好扩展性与可复用性,关系丰富度为0.676大于0.5,表明具有丰富类间关系,利于反映农产品贸易复杂关系。【创新/局限】创新提出面向农产品贸易信息关联融合的本体框架与相关信息融合方法,局限为与外文贸易信息关联不足,需要进一步扩展。【Purpose/significance】The information association and infusion of agricultural trade will reduce market uncertainty. This paper uses semantic web and related information fusion technology to integrate multi-source information to provide support for government decision-making and trade.【Method/process】Based on the characteristics of agricultural trade and information resources, the paper combines the ontology layered design model and the Seven-Step method. Firstly the top-level ontology is constructed with PROV-O ontology, secondly under the top-level ontology architecture, 13 existing domain ontologies are reused to describe the semantic structure of agricultural product, stakeholder, supply-demand and logistics activities, and information fusion is realized based on semantic similarity and reasoning methods.【Result/conclusion】Based on the ontology, multiple information sources fusion has been realized. The relationship richness is 0.676 which close to 1 base on OntoQA index, indicating that the ontology has rich inter-class relations, which help to better describe the complex relations of agricultural trade.【Innovation/limitation】Innovatively propose an ontology framework and related informaiton fusion methods for the integration of agricultural trade information. Meanwhile it is limited to insufficient association with foreign trade information and needs to be further expanded.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.104