检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:万佳华 魏加华[1,2,3] 李琼[2] 任燕[1] WAN Jiahua;WEI Jiahua;LI Qiong;REN Yan(School of Water Resources and Electric Power,Qinghai University,Xining 810016,China;State Key Laboratory of Plateau Ecology and Agriculture,Qinghai University,Xining 810016,China;State Key Laboratory of Hydroscience and Engineering,Tsinghua University,Beijing 100084,China)
机构地区:[1]青海大学水利电力学院,青海西宁810016 [2]省部共建三江源生态与高原农牧业国家重点实验室,青海大学,青海西宁810016 [3]清华大学水沙科学与水利水电工程国家重点实验室,北京100084
出 处:《青海大学学报》2021年第2期1-9,共9页Journal of Qinghai University
基 金:国家重点研发计划项目(2017YFC0403600);清华大学水沙科学与水利水电工程国家重点实验室开放基金项目(sklhse-2018-A-01);青海省科学技术厅重点研发与转化计划项目(2019-SF-146)。
摘 要:为了解黄河源园区地物分布格局,本文以黄河源园区为研究对象,利用Landsat 8 OLI影像获取其光谱、植被、水体和纹理特征,采用Relief F算法对所有特征进行重要性排序,选出前8个特征作为优选特征;基于随机森林(RF)方法研究不同特征组合对分类结果的影响,为评估RF方法的效果,对优选特征组合,采用决策树、K近邻、感知机和支持向量机方法与RF方法进行对比;最后综合所有特征完成黄河源园区土地覆被分类。结果表明:(1)综合利用光谱、植被、水体和纹理特征,可以有效提高分类精度;(2)利用Relief F算法,可快速遴选出有效特征,大幅缩短模型运行时间;(3)相对于其他4种分类方法,随机森林的分类精度最高;(4)黄河源园区地物类型以中低覆盖度草地为主。In order to understand the distribution pattern of surface features in the park of the source region of the Yellow River,this paper takes the park of the source of the Yellow River as the research object.Firstly,the spectrum,vegetation,water body and texture features are obtained by using Landsat 8 OLI image.Relief F algorithm is used to rank the importance of all features so as to select the first 8 features as optimal features;secondly,the influence of different feature combinations on the classification results is studied based on the RF method.In order to evaluate the effects of RF method,the optimal features are combined and compared with RF method by decision tree,K-nearest neighbor,perceptron and support vector machine.Finally,the classification of land cover in the park of the source region of the Yellow River is completed based on all the characteristics.The results show that:(1)The accuracy of the classification can be effectively improved by comprehensive utilization of spectrum,vegetation,water body and texture features;(2)Using Relief F algorithm can quickly select effective features so as to shorten the running time of the model;(3)RF method has the highest accuracy compared with the other four classification;(4)The surface features in the park of the source region of the Yellow River are mainly grassland with medium and low coverage.
关 键 词:土地覆被分类 随机森林 特征选择 Relief F算法 黄河源园区
分 类 号:S159[农业科学—土壤学] P237[农业科学—农业基础科学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.38