基于视频图像检测的高速公路车型分道行驶监测系统  被引量:6

Monitoring System of Freeway Vehicle Lane Separation Based on Video Image Detection

在线阅读下载全文

作  者:陈钊正 张善关 杜飞 胡勇 张跃进[3] CHEN Zhao-zheng;ZHANG Shan-guan;DU Fei;HU Yong;ZHANG Yue-jin(Jiangxi Provincial Communication Investment Group Co.,Ltd.,Nanchang 330036,China;Jiangxi Huitong Technology Development Co.,Ltd.,Nanchang 330036,China;School of Information Engineering,East China Jiaotong University,Nanchang 330013,China;Jiangxi Transportation Science Research Institute Co.,Ltd.,Nanchang 330200,China)

机构地区:[1]江西省交通投资集团有限责任公司,南昌330036 [2]江西慧通科技发展有限责任公司,南昌330036 [3]华东交通大学信息工程学院,南昌330013 [4]江西省交通运输科学研究院有限公司,南昌330013

出  处:《科学技术与工程》2021年第9期3682-3688,共7页Science Technology and Engineering

基  金:国家自然科学基金(61105015);江西省交通运输厅项目(2018X0016)。

摘  要:为解决交通监管部门对于高速公路客货混流问题监管效率低效果差的问题,通过视频图像检测法对高速公路进行研究和应用,构建了基于机器学习和计算机视觉的视频图像检测模式,以提高视频检测的稳定性和准确率,提出了基于尺度不变特征变换(scale invariant feature transformation, SIFT)池化的车辆特征提取模型,摒除传统视频背景建模稳定性和准确率不高的缺陷,获取车辆车型特征数据和分道行驶参数,经过试点样本训练后,实验结果表明:车型识别的准确率高达95%以上,车辆分道检测的准确率达到90%左右。For the mixed flow of passengers and goods on expressways,the traffic supervision department is of low efficiency and bad effect.A video image detection method was used to study and used for the expressway.In order to improve the accuracy and stability of video detection,a video image detection model based on computer vision and depth learning was built then.The scale invariant feature transformation(SIFT)pool based on the scale invariant feature transform was proposed.The model of vehicle feature extraction was used to overcome the shortcomings of traditional video background modeling with low stability and accuracy,and the feature data and running parameters of vehicles were obtained.After the pilot sample training,the results show that the accuracy of vehicle recognition is as high as 95%,and the accuracy of vehicle lane detection can also reach about 90%.

关 键 词:客货分道 视频检测 尺度不变特征变换池化 机器学习 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象