强激光等离子体相互作用驱动高次谐波与阿秒辐射研究进展  被引量:5

Research progress of high-order harmonics and attosecond radiation driven by interaction between intense lasers and plasma

在线阅读下载全文

作  者:徐新荣 仲丛林 张铱 刘峰 王少义[6] 谭放[6] 张玉雪[6] 周维民 乔宾[2,3] Xu Xin-Rong;Zhong Cong-Lin;Zhang Yi;Liu Feng;Wang Shao-Yi;Tan Fang;Zhang Yu-Xue;Zhou Wei-Min;Qiao Bin(Department of Physics,National University of Defense Technology,Changsha 410073,China;State Key Laboratory of Nuclear Physics and Technology(SKLNPT),School of Physics,Peking University,Beijing 100871,China;Ministry of Education Key Laboratory of High Energy Density Physics Simulation(HEDPS),Center for Applied Physics and Technology(CAPT),Peking University,Beijing 100871,China;Key Laboratory for Laser Plasmas of Ministry of Education,School of Physics and Astronomy,Shanghai Jiao Tong University,Shanghai 200240,China;Collaborative Innovation Center for IFSA,Shanghai Jiao Tong University,Shanghai 200240,China;State Key Laboratory of Plasma Physics,Research Center of Laser Fusion,China Academy of Engineering Physics,Mianyang 621000,China)

机构地区:[1]国防科技大学文理学院物理系,长沙410073 [2]北京大学物理学院,核物理与核技术国家重点实验室,北京100871 [3]北京大学应用物理与技术研究中心,高能量密度物理数值模拟教育部重点实验室,北京100871 [4]上海交通大学物理与天文学院,激光等离子体教育部重点实验室,上海200240 [5]上海交通大学IFSA协调创新中心,上海200240 [6]中国工程物理研究院激光聚变研究中心,等离子体物理国家重点实验室,绵阳621000

出  处:《物理学报》2021年第8期149-163,共15页Acta Physica Sinica

基  金:国防基础核科学挑战计划(批准号:TZ2018005);国家自然科学基金(批准号:11825502,11921006,12004433);国家自然科学基金-中国工程物理研究院联合基金(批准号:U1630246);中科院先导基金(批准号:XDA25050900);国家重点研发计划(批准号:2016YFA0401100);湖南省自然科学基金(批准号:2020JJ5649);国防科技大学科研计划项目(批准号:ZK19-12)资助的课题。

摘  要:对超快过程的探测和控制决定了人类在微观层面认识和改造物质世界的能力.阿秒光源可完成对组成物质的电子运动及其关联效应进行超高时空分辨的探测和操控,为人类认识微观世界提供了全新手段,被认为是激光科学史上最重要的里程碑之一.世界主要科技强国都将阿秒科学列为未来10年重要的科技发展方向.利用强激光与物质相互作用产生高次谐波是突破飞秒极限实现高亮度阿秒脉冲辐射的重要方案之一,成为了近年来激光等离子体领域的研究热点.本文聚焦强激光与等离子体相互作用中的高次谐波和阿秒脉冲辐射,主要介绍其产生机制、研究进展和前沿应用,并对未来的发展趋势和创新突破进行展望.The realizing of the detection and control of ultrafast process conduces to understanding and remoulding the physical world at a microcosm level.The attosecond light source with attosecond temporal resolution and nanometer spatial resolution can realize real-time detection and manipulation of the atomic-scale electronic dynamics and relevant effects of the substances.Therefore,attosecond science is considered as one of the most important milestones in the history of laser science.and has been listed as an important scientific and technological development direction in the coming 10 years.High-order harmonic generation(HHG)from intense laser-matter interaction is one of the most important routes to breaking through the femtosecond limit and achieving brilliant attosecond pulse radiations,and thus having aroused great interest in recent years.After more than 20-year development,the research about attosecond pulse generation by laser-gas interaction has reached a mature stage.This method produces the shortest isolated pulse in the world to date,with a pulse width being only 43 as.However,this method based on ionization-acceleration-combination encounters inevitable difficulties in pursuing the relativistically intense attosecond pulses and the highest possible photon energy.Quite a lot of studies have proved that the HHG efficiency from laser-plasma interaction can be a few orders of magnitude higher than that in gaseous media,which makes it possible to produce pulses with shorter pulse width and higher photon energy.In this article,we introduce the main generation mechanisms,research progress and frontier applications of HHG through the laser-plasma interaction process.In Section 2,we introduce the HHG generation mechanisms,including coherent wake emission,which is used to describe the HHG process driven by a nonrelativistic laser;relativistic oscillating mirror,which can well explain most of HHG processes generated from plasma-vacuum interface in relativistic regime;coherent synchrotron emission,which is suited to

关 键 词:强激光 等离子体 高次谐波 阿秒脉冲 

分 类 号:O53[理学—等离子体物理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象