检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈凯 陈丽玲 应明 陈世群[1] 刘勇[1,3,4] 周颖玲 CHEN Kai;CHEN Li-ling;YING Ming;CHEN Shi-qun;LIU Yong;ZHOU Ying-ling(Guangdong Cardiovascular Institute,Guangdong Provincial People′s Hospital,Guangdong Academy of Medical Sciences,Guangzhou 510080,China;The First People′s Hospital of Longyan City,Longyan,Fujian 364000,China;The Second Clinical Medical College of Southern Medical University,Guangzhou 510080,China;The First Clinical Medical College of South China University of Technology,Guangzhou 510080,China)
机构地区:[1]广东省人民医院(广东省医学科学院)广东省心血管病研究所,广州510080 [2]福建省龙岩市第一人民医院,福建龙岩364000 [3]南方医科大学第二临床医学院,广州510080 [4]华南理工大学第一临床医学院,广州510080
出 处:《岭南心血管病杂志》2021年第2期132-137,共6页South China Journal of Cardiovascular Diseases
摘 要:目的探索冠状动脉造影(coronary angiography,CAG)或经皮冠状动脉介入(percutaneous coronary inter⁃vention,PCI)治疗患者PCI治疗后造影剂肾病(contrast-induced nephropathy,CIN)风险预测因子并建立PCI治疗前新型CIN预测模型。方法入选2010年1月至2013年12月之间在广东省人民医院行CAG或者PCI治疗,且年龄≥18岁的患者,共1981例患者纳入研究分析。选择在单因素分析中具有重要意义或者既往报道的独立预测因子作为CIN预测模型的候选变量。结果CIN的发病率为2.73%(57/1981)。与非CIN组患者相比,CIN组患者氨基末端脑钠肽前体(N-terminal pro-brain natriuretic peptide,NT-proBNP)、血清尿素氮、尿酸、高敏C反应蛋白、术前血清肌酐、肌酐清除率等实验室测量值显著增高,差异有统计学意义(P<0.05);血红蛋白、血清白蛋白浓度显著下降,差异有统计学意义(P<0.05)。入选年龄、高敏C反应蛋白、NT-proBNP、白蛋白、术前肌酐5项指标建立新的术前CIN预测模型。所建立的模型与Mehran评分相比,有更好的预测CAG后CIN结局效能(0.8815 vs.0.8060,P<0.001),内部验证预测性能佳。结论本研究建立了一个简单易用的风险评分工具,具有较好的预测性和良好判别能力。与经典Mehran评分相比,能更好地预测CAG后CIN结局效能。Objectives To explore the risk predictors of contrast-induced nephropathy(CIN)in patients underwent coronary angiography(CAG)or percutaneous coronary intervention(PCI)and to establish a new predictive model of CIN before PCI.Methods Totally 1981 patients hospitalized in Guangdong Provincial People′s Hospital between January 2010 and December 2013,aged≥18 years,had a biomarker[N-terminal pro-brain natriuretic peptide(NT-proBNP),high-sensitivity C-reactive protein(hs-CRP)]and agreed to stay in the hospital for observation for 2 to 3 days after CAG were included.Risk factors that were significant in univariate and multivariate analyses were selected into the final CIN prediction model.Results The incidence of CIN was 2.73%(57/1981).Compared with non-CIN group,concen⁃trations of NT-proBNP,serum urea nitrogen,uric acid,hs-CRP,preoperative serum creatinine and creatinine clearance significantly increased in CIN group(P<0.05).However,concentrations of hemoglobin and serum albumin in CIN group were lower than those in non-CIN group(P<0.05).Five indexes including age,hs-CRP,NT-proBNP,albu⁃min and preoperative creatinine were selected to establish a new preoperative CIN prediction model.Finally,compared with Mehran score,the model had a better predictive performance of CIN outcome after CAG(0.8815 vs.0.8060,P<0.001),and the predictive performance of internal validation was better.Conclusions This study established a simple and easy to use risk scoring tool with a good predictability and a good discriminant ability.Compared with the classical Mehran score,it has a better predictive efficacy of CIN outcome after CAG.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15