检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张海 李士心 石军[2] 刘小钰 王坤 孙夏丽 ZHANG Hai;LI Shixin;SHI Jun;LIU Xiaoyu;WANG Kun;SUN Xiali(College of Electronic Engineering,Tianjin University of Technology and Education,Tianjin 300222,China;Zhumadian Electric Power Company,State Grid Henan Electric Power Company,Zhumadian 463099,China)
机构地区:[1]天津职业技术师范大学电子工程学院,天津300222 [2]国家电网河南省电力公司驻马店供电公司,驻马店463099
出 处:《电力系统及其自动化学报》2021年第4期97-101,107,共6页Proceedings of the CSU-EPSA
基 金:天津市科技特派员资助项目(19JCTPJC54800);天津市研究生科研创新资助项目(2019YJSS194)。
摘 要:针对短期电力负荷预测问题,提出一种基于串行式遗传算法-反向传播神经网络模型的预测方法。首先,由关联分析法确定负荷主要影响因素。然后,确定反向传播神经网络1的输入量为负荷主要影响因素,输出量为相应负荷值,实现多因素回归预测。最后,将反向传播神经网络2串行式融入,并确定其训练数据集为反向传播神经网络1的预测值集,继而实现时间序列预测。两个反向传播神经网络在训练前均采用遗传算法进行初始权值阈值的优化,该方法实现了多因素回归预测与时间序列预测的融合。仿真结果表明,本文所提方法较其他同类型负荷预测方法具有更高的预测精度,可较好地应用于负荷预测工作。Aimed at the problem of short-term power load forecasting,a forecasting method based on the serial genetic algorithm-back propagation neural network model was proposed.First,the main influence factors of load were deter⁃mined by the correlation analysis method.Then,the input of BP neural network 1 was determined as the main influenc⁃ing factor of load,and its output was the corresponding load value,thus realizing the multi-factor regression prediction.Finally,BP neural network 2 was combined serially,and its training data set was determined as the prediction value set of BP neural network 1,thereby realizing the time series prediction.Before training,both BP neural networks used the GA to optimize the initial weight threshold.This method realized the fusion of multi-factor regression prediction and time series prediction.Simulation results show that the proposed method has higher prediction accuracy than other simi⁃lar load forecasting methods,and it can better facilitate the load forecasting work.
关 键 词:短期负荷预测 反向传播神经网络 遗传算法 串行式融合 关联分析
分 类 号:TM715[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117