耦合二级结构数和非局域相互作用预测蛋白质折叠速率  被引量:3

Prediction of protein folding rate by coupling of secondary structures number and nonlocal interaction

在线阅读下载全文

作  者:徐素杰 吕军[1,2] 张颖 XU Su-jie;LV Jun;ZHANG Ying(College of Sciences,Inner Mongolian University of Technology,Hohhot 010051,China;Inner Mongolian Key Laboratory of Statistical Analysis Theory for Life Data and Neural Network Modeling,Hohhot 010051,China)

机构地区:[1]内蒙古工业大学理学院,内蒙古呼和浩特010051 [2]内蒙古自治区生命数据统计分析理论与神经网络建模重点实验室,内蒙古呼和浩特010051

出  处:《内蒙古工业大学学报(自然科学版)》2021年第2期92-100,共9页Journal of Inner Mongolia University of Technology:Natural Science Edition

基  金:内蒙古自治区自然科学基金资助项目(2019LH01004)。

摘  要:寻找改进蛋白质折叠速率可预测性的经验参数,是理解蛋白质折叠机制的重要途径之一。假设蛋白质的折叠元件为天然态二级结构,对折叠元件的组织过程即为折叠。构造了表征折叠自由能垒高度的经验参数——二级结构数与非局域相互作用的耦合(coupling of secondary structure number and nonlocal interaction,CSNI),进一步按照过渡态理论建立了折叠速率预测模型。在现有实验资料集上检验,CSNI模型对折叠速率的拟合优度达到R2=0.73,相关性优于现有的典型模型,并且由CSNI模型所呈现的折叠自由能景观,为深入理解蛋白质折叠机制提供了见解.Finding empirical parameters to improve the predictability of protein folding rate is one of the important ways to understand protein folding mechanism.Assuming that the folding elements of the protein are natural secondary structures,the organization process of folding elements becomes that of folding.An empirical parameter,by coupling of secondary structure number and nonlocal interaction(CSNI),is constructed to characterize the height of folding free energy barrier;and the folding rate prediction model is further established according to the transition state theory.Tested on the existing experimental data set,the goodness of fit of the CSNI model to the folding rate reaches R2=0.73,and the correlation is better than that of the existing typical models.Moreover,the folding free energy landscape presented by CSNI model provides insights for further understanding of the protein folding mechanism.

关 键 词:蛋白质折叠速率 自由能垒 二级结构数 长程序 耦合 等效势垒 

分 类 号:Q-03[生物学] Q71

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象