检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王乐 董雷 胡天宇[1,2] 郭柯 WANG Le;DONG Lei;HU TianYu;GUO Ke(State Key Laboratory of Vegetation and Environmental Change,Institute of Botany,Chinese Academy of Sciences,Beijing 100093,China;University of Chinese Academy of Sciences,Beijing 100049,China)
机构地区:[1]中国科学院植物研究所,植被与环境变化国家重点实验室,北京100093 [2]中国科学院大学,北京100049
出 处:《中国科学:生命科学》2021年第3期219-228,共10页Scientia Sinica(Vitae)
基 金:生物多样性调查评估项目(批准号:2019HJ2096001006);中国科学院战略性先导科技专项(A类)(批准号:XDA19050402)资助。
摘 要:植被图是描绘植被类型及其空间分布格局的植被生态学专业图件,既是植被调查和研究的成果,也是进一步揭示植被资源、植被分布规律的重要基础资料,还是生态学和地理学等相关学科研究和农林牧业发展与生态建设的重要参考.本文概述了植被图编研的起源与发展,回顾了中国全国性及地方植被图的编制历史和部分成果.中国植被制图始于20世纪50年代,1960年出版的1:800万中国植被图首次表现了全国129个群系级植被类型,随后相继出版了1:400万、1:100万等全国植被图和多种比例尺的省区及地方的区域性植被图.未来的植被图编制需要充分依托现代科学技术,以充足的野外调查资料和植被生态学研究为基础,利用多源多时相的遥感资料和生态地理信息大数据,并结合深度学习等人工智能分类方法.Vegetation maps are the product of vegetation research, which contain professional ecology information in terms of both vegetation types and spatial distribution patterns. They are important and basic data for revealing the distribution features of plants and communities, which can provide not only a solid foundation for research in ecology and geography, but also useful reference information for the development of agriculture, forestry, husbandry and ecological construction. The brief overview of the origin and development of global vegetation mapping was showed in this paper. And the compiling history and achievements of national and regional vegetation maps of China were reviewed. Vegetation mapping of China started in the 1950s. The vegetation maps of China(1:8,000,000), published in 1960, firstly showed 129 alliance-level vegetation types of the whole country. Subsequently, national vegetation maps(i.e., 1:4,000,000 and 1:1,000,000), provincial and regional vegetation maps of various scales were published successively. In the future, vegetation map compilation should fully utilize modern science and technology, be based on sufficient field survey data and vegetation ecology research. Meanwhile, multi-source and multi-temporal remote sensing data and big data of ecological geographic information, combined with artificial intelligence(e.g., deep learning) classification methods are also required.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.43