检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张晓彤[1] 孙铭阳 王浩然[1] 吕沛桐 宋凯文 张天瑜[1] ZHANG Xiaotong;SUN Mingyang;WANG Haoran;LV Peitong;SONG Kaiwen;ZHANG Tianyu(College of Instrumentation&Electrical Engineering,Jilin University,Jilin,Changchun,130026,China)
机构地区:[1]吉林大学仪器与电气工程学院,长春130026
出 处:《激光杂志》2021年第4期96-99,共4页Laser Journal
基 金:国家重点科研项目(No.2019YFC0409105);中山市科技局(No.2018B1021);广东省教育厅(No.2018KQNCX332);中山学院项目(No.418YKQN08)。
摘 要:计算机的软硬件发展使得深度学习广泛地应用于生活的各方面,尤其是图像识别分类领域。在医学领域,更年期泌尿生殖系统综合症已经严重影响着妇女的健康和性功能方面的生活质量,目前通过光学相干断层成像(OCT)系统可以得到实时光学活检图像,研究运用深度学习算法可以更高效地完成患者和健康人群的图像识别,使用新型内窥镜OCT在体内对妇女阴道成像,分别以Inception-v3,VGG16,ResNet50三个网络模型结构用于健康人、患者和正在接受治疗患者的数据集,通过对比数据得到ResNet50在不影响精度下收敛迅速,消耗时间更短,因此选择ResNet50进行识别更为合适。The development of computer software and hardware makes deep learning widely used in all aspects of life,especially in the field of image recognition and classification.In the field of medicine,menopausal urogenital syndrome has seriously affected women’s health and quality of life in terms of sexual function,At present,real-time optical biopsy images can be obtained by optical coherence tomography(OCT)system.In this paper,the deep learning algorithm can be used to more efficiently complete the image recognition of patients and healthy people.A new type of endoscopic OCT is used to image women’s vagina in vivo,and this paper proposes three network model structures of Inception-v3,VGG16 and ResNet50,which are used in the test group of healthy people,patients and patients undergoing treatment.By comparing the data,it is found that ResNet50 converges rapidly and consumes less time without affecting the accuracy,so it is more appropriate to select ResNet50 for recognition.By comparing the data,ResNet50 converges rapidly without sacrificing the accuracy and consumes less time,so it is more appropriate to select ResNet50 for recognition.
关 键 词:图像识别 光学相干断层成像 更年期泌尿生殖系统综合症 ResNet50
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.226.150.251