检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]Department of Finance and Control Sciences,Shanghai Center for Mathematical Science,Fudan University,Shanghai 200433,China [2]Department of Finance and Control Sciences,School of Mathematical Sciences,Fudan University,Shanghai 200433,China
出 处:《Chinese Annals of Mathematics,Series B》2021年第2期199-216,共18页数学年刊(B辑英文版)
基 金:This work was supported by the National Key R&D Program of China(No.2018YFA0703900);the National Natural Science Foundation of China(No.11631004)。
摘 要:The authors prove the gradient convergence of the deep learning-based numerical method for high dimensional parabolic partial differential equations and backward stochastic differential equations, which is based on time discretization of stochastic differential equations(SDEs for short) and the stochastic approximation method for nonconvex stochastic programming problem. They take the stochastic gradient decent method,quadratic loss function, and sigmoid activation function in the setting of the neural network. Combining classical techniques of randomized stochastic gradients, Euler scheme for SDEs, and convergence of neural networks, they obtain the O(K^(-1/4)) rate of gradient convergence with K being the total number of iterative steps.
关 键 词:PDES BSDES Deep learning Nonconvex stochastic programming Convergence result
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.71