融合空间模糊C-均值聚类的纱线疵点检测算法  被引量:4

Yarn Defects Detection Algorithm Combined with Spatial Fuzzy C-Means Clustering

在线阅读下载全文

作  者:赵妍 张缓缓[1] 景军锋[1] 李鹏飞[1] Zhao Yan;Zhang Huanhuan;Jing Junfeng;Li Pengfei(School of Electronics and Information,Xi'an Polytechnic University,Xi'an,Shaanxi 710048,China)

机构地区:[1]西安工程大学电子信息学院,陕西西安710048

出  处:《激光与光电子学进展》2021年第4期199-205,共7页Laser & Optoelectronics Progress

基  金:国家自然科学基金61902302;陕西省高校科协青年人才托举计划20180115。

摘  要:为了精确评价纱线疵点的种类与个数,提出了一种融合空间模糊C-均值(FCM)聚类的纱线疵点检测算法。首先利用融合空间FCM聚类算法提取纱线条干;然后对纱线条干进行形态学开运算处理,以获取精确的纱线条干,并利用条干上下边缘点之间的像素个数计算纱线的直径与平均直径;最后根据纱线疵点标准判定纱线疵点的种类与个数。为了验证本算法的有效性和准确性,对多种不同线密度的纯棉纱线进行测试,并将测试结果与电容性纱疵分级仪的检测结果进行对比。结果表明,本算法与电容性的检测结果一致性较好,且价格低廉,不易受环境温度、湿度等因素的影响。In order to accurately evaluate the types and number of yarn defects,an algorithm of yarn defects detection based on spatial fuzzy C-means(FCM)clustering is proposed in this paper.First,the spatial FCM clustering algorithm is used to extract the yarn strips.Then,morphological opening operation is performed on the yarn strips to obtain accurate yarn strips,and the number of pixels between the upper and lower edges of the yarn is used to calculate the measured diameter and average diameter of the yarn.Finally,the type and number of yarn defects are determined according to the standard of yarn defects.In order to verify the validity and accuracy of the algorithm,a variety of pure cotton yarns with different linear densities are tested,and experimental results are compared with the capacitive yarn defects classifier.The results show that the algorithm is in good agreement with the result of capacitance detection,and it is cheap and not easy to be affected by environmental temperature,humidity and other factors.

关 键 词:图像处理 模糊C-均值聚类算法 纱线条干 形态学开运算 纱线疵点 

分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象