检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:桑江徽 姜海燕[1] SANG Jianghui;JIANG Haiyan(College of Information Science and Technology,Nanjing Agricultural University,Nanjing 210095,China)
出 处:《计算机工程与应用》2021年第9期154-161,共8页Computer Engineering and Applications
基 金:国家自然科学基金(31872847);江苏省重点研发计划(现代农业)重点项目(BE2019383)。
摘 要:针对现有的多标记迁移学习忽略条件分布而导致泛化能力不足的问题,设计了一种基于联合分布的多标记迁移学习(Multi-label Transfer Learning via Joint Distribution Alignment,J-MLTL)。分解原始特征生成特征子空间,在子空间中计算条件分布的权重系数,最小化跨领域数据的边际分布和条件分布差异;此外,为了防止标记内部结构信息损失,利用超图对具有多个相同标签的数据进行连接,保持领域内几何流行结构不受领域外知识结构的影响,进一步最小化领域间的分布差异。实验结果表明,相比于已有多标记迁移学习算法在分类精度方面具有显著提升。To improve the poor generalization of the existing multi-labels transfer learning,a Multi-label Transfer Learning via Joint Distribution Alignment(J-MLTL)is proposed.J-MLTL decomposes the original features to generate a feature subspace,and calculates the weight coefficients of the conditional distribution in the subspace.Finally,J-MLTL narrows the differences between domains by adjusting the marginal and conditional distribution of the data.In order to prevent the loss of internal information in the labels,J-MLTL uses hypergraph to connects data with multiple identical labels.Hypergraph keeps geometric popular structures in the domain from being affected by knowledge structures outside the domain,and further minimizes distribution differences between domains to ensure good results.The experimental results show that compared with the existing multi-label transfer learning algorithms,the classification accuracy is significantly improved.
分 类 号:TP181[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7