基于系统总耗时最小的双目标泊位分配模型  被引量:3

Bi-level objective berth allocation model based on the minimum total system time consumption

在线阅读下载全文

作  者:杨晓芳[1] 江林成 YANG Xiaofang;JIANG Lincheng(Business School,University of Shanghai for Science and Technology,Shanghai 200093,China)

机构地区:[1]上海理工大学管理学院,上海200093

出  处:《上海理工大学学报》2021年第2期179-185,共7页Journal of University of Shanghai For Science and Technology

基  金:国家自然科学基金资助项目(51308409);上海市浦江人才计划资助项目(15PJC075)。

摘  要:针对为同一停车场不同入口同时申请停车诱导的车辆分配泊位问题,提出了以系统总耗时最小为第一层目标和单个停车者总耗时相近为第二层目标的双目标泊位分配模型。定量描述和分析了行进车道上泊车行为的发生对行程时间的影响,采用模糊综合评判法对停车入位时间进行分析,针对Δt时段内系统中待泊车辆数与停车场内有效泊位数比值的不同,选择不同的影响因素,制定不同的泊位分配策略。通过算例分析表明:此模型能够适应于停车场内空满程度不同的情况,克服了单目标模型最优解的不唯一性,同时达到了系统内总耗时最小和各停车者耗时相近的诱导目标。Aiming at the problem of berth allocation for vehicles applying for parking guidance at different entrances of the same parking lot at the same time,a bi-level objective berth allocation model was proposed,which took the minimum total time consumption of the system as the first level goal and the similar total time consumption of a single parking person as the second level goal.The impact of parking behaviors on the travel time in the driving lane was analyzed,and the fuzzy comprehensive evaluation method was used to analyze the parking time.According to different ratios of the number of vehicles waiting to be parked in the system and the number of effective berth in the parking lot in the period of Δt,different influencing factors were selected,and different parking allocation strategies were formulated.The example shows that the model can adapt to the situation that the parking lot is full or empty,overcome the non uniqueness of the optimal solution of the single objective model,and achieve the goal of minimizing the total time consumption in the system and the similar time consumption of each parking person.

关 键 词:公共停车场 泊位分配 停车诱导 双层目标模型 

分 类 号:U491[交通运输工程—交通运输规划与管理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象