基于SELEX技术的疾病标志物发现新策略研究进展  被引量:3

Research Advances of New Strategies for Disease Biomarker Discovery Based on SELEX Technique

在线阅读下载全文

作  者:赵纳杰 刘秀峰[1] 刘吉华[1] ZHAO Na-jie;LIU Xiu-feng;LIU Ji-hua(China Pharmaceutical University,Jiangsu Key Laboratory of Traditional Chinese Medicine Exaluation and Translational research,Nanjing 211198,China)

机构地区:[1]中国药科大学江苏省中药评价与转化重点实验室,江苏南京211198

出  处:《药物生物技术》2021年第1期78-83,共6页Pharmaceutical Biotechnology

基  金:“双一流”高校项目(No.CPU2018GY32)。

摘  要:生物标志物(Biomarker)是指可以标记生物体结构或功能改变的生化指标。在疾病研究中,生物标志物可供客观测定和评价机体所处的生理或病理状态,为疾病的诊断、鉴定提供辅助手段。指数富集的配体系统进化(Systematic evolution of ligands by exponential enrichment,SELEX)技术是指从随机单链寡核苷酸库中筛选获得与靶分子高亲和力和高特异性结合的适配体,基于SELEX技术筛选获得的差异靶分子适配体可促进生物标志物的发现,近年来被广泛应用于疾病生物标志物的发现,尤其是细胞SELEX(Cell-SELEX)。文章综述了基于SELEX技术发现疾病生物标志物的新策略和新进展,以及核酸适配体在疾病诊断和治疗上的应用,为相关研究提供参考。Biomarker refers to a biochemical indicator that can mark changes in the structure or function of an organism.In disease research,biomarkers can be used to objectively determine and evaluate the physiological or pathological state of the body,and provide auxiliary methods for the diagnosis and identification of diseases.Systematic Evolution of Ligands by Exponential Enrichment( SELEX) technique refers to the selection of aptamers with high affinity and high specific binding to target molecules from random singlestranded oligonucleotide libraries. Differential target aptamers obtained based on SELEX technique can promote the discovery of biomarkers. In recent years,they have been widely used in the discovery of disease biomarkers,especially Cell-SELEX. This article has reviewed the new strategies and advances in discovering disease biomarkers based on SELEX technique,and the application of nucleic acid aptamers was in disease diagnosis and treatment,providing reference for related research.

关 键 词:生物标志物 指数富集的配体系统进化技术 新策略 适配体 疾病诊断 靶向治疗 

分 类 号:R446.9[医药卫生—诊断学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象