一种降低BICM-ID系统误比特率的高阶APSK星座映射方法  

A High-Order APSK Constellation Mapping Method for Reducing Bit Error Rate in BICM-ID System

在线阅读下载全文

作  者:付芳 焦琦 张志才 FU Fang;JIAO Qi;ZHANG Zhicai(School of Physics and Electronic Engineering, Shanxi University, Taiyuan 030006, China)

机构地区:[1]山西大学物理电子工程学院,山西太原030006

出  处:《测试技术学报》2021年第2期165-169,共5页Journal of Test and Measurement Technology

摘  要:本文提出一种基于蝙蝠算法的星座映射方法,旨在解决采用高阶振幅移相键控APSK调制的BICM-ID系统中误比特率高的问题.所提出的星座映射方法包括以下步骤:建立系统模型并初始化参数;随机产生多组解;计算每一组解的误比特率,取误比特率最小值对应的一组解为最优解;开始迭代,产生新解并在最优解周围产生局部解;更新当前全局最优解,当达到最大迭代次数时,输出最优解.所提方法不仅星座映射的效率高,而且误比特率性能优于现有映射方法,实验结果表明,对32APSK而言,当系统的误比特率为10-5时,采用本文所提方法优化后需要的信噪比为8.73 dB,相比于DVB-S2标准中方法和预编码方法所获得的信噪比增益分别是0.09 dB和1.88 dB.This paper introduced a constellation mapping method based on bat algorithm.In order to solve the problem of high bit error rate in BICM-ID systems using high-order amplitude phase shift keying(APSK)modulation.The proposed method included the following steps:A system model is established with initialized parameters;Multiple sets of solutions are generated randomly;The bit error rate(BER)of each set of solutions are calculated,and took the set of solutions corresponding to the minimum BER as the optimal solution;Iterative process is started,new solutions and local solutions around the optimal solution are generated;the current global optimal solution is updated,the optimal solution was outputted when the maximum number of iterations was reached..The proposed method not only yields mappings for higher order constellations efficiently but also outperforms previously reported mappings in terms of BER performance.The results demonstrate that for 32APSK when BER is 10-5,proposed method needs 8.73 dB,Eb/N0 gains obtained are 0.09 dB and 1.88 dB compared to DVB-S2 standard and precoding method respectively.

关 键 词:蝙蝠算法 高阶APSK 星座映射 BICM-ID系统 误比特率 

分 类 号:TN911.3[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象