UWSNs中面向能耗和延时优化的移动数据收集  

Mobile data gathering for energy consumption and delay optimization in Underwater Wireless Sensor Networks

在线阅读下载全文

作  者:殷正坤[1] 李鹏 YIN Zhengkun;LI Peng(College of Economics,Trade and Information Technology,Changsha Vocational and Technical College,Changsha Hunan 410217,China;School of Information Science and Engineering,Hunan University of Chinese Medicine,Changsha Hunan 410208,China)

机构地区:[1]长沙职业技术学院经贸与信息技术学院,湖南长沙410217 [2]湖南中医药大学信息科学与工程学院,湖南长沙410208

出  处:《太赫兹科学与电子信息学报》2021年第1期112-116,131,共6页Journal of Terahertz Science and Electronic Information Technology

基  金:湖南省自然科学基金青年项目资助(2019JJ50453)。

摘  要:为了降低水下无线传感网(UWSN)中数据收集的能耗和保证实时性,提出一种基于压缩感知的移动数据收集方案。以分布式能量均衡非均匀分簇(DEBUC)协议和压缩感知理论为基础,簇内节点依据设计的稀疏测量矩阵决定是否参与压缩采样,并将获得的测量值传输至簇头。然后,通过自主式水下潜器(AUV)的移动来收集各个簇头上的数据到数据中心,该问题被建模为基于信息质量最大化的旅行商问题(TSP),并提出近似算法进行求解。仿真实验结果表明,相比于已有的水下移动数据收集算法,本文方案在保证数据收集可靠性的同时,缩短了数据收集延时,延长了网络寿命。A mobile data collection scheme based on compressive sensing is proposed in order to reduce the energy consumption and ensure real-time performance of data collection in Underwater Wireless Sensor Network(UWSN).Firstly,based on the Distributed Energy-Balanced Unequal Clustering(DEBUC)protocol and compressive sensing theory,cluster nodes decide whether to participate in compressive sampling according to the designed sparse measurement matrix,and transfer the obtained measurement results to the cluster head.Then,the data at cluster head is mobile collected by Autonomous Underwater Vehicle(AUV)to the data center.This problem is modeled as a Traveling Salesman Problem(TSP)based on the maximization of information quality,and an approximate algorithm is proposed to solve this problem.The simulation results show that,compared with the existing underwater data collection algorithms,the proposed scheme effectively reduces the data collection delay and prolongs the lifetime of network,with assuring the reliability of data collection.

关 键 词:水下无线传感网 数据收集 压缩感知 测量矩阵 旅行商问题 能耗 延时 

分 类 号:TN919.72[电子电信—通信与信息系统] TP393[电子电信—信息与通信工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象