检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:袁红春[1,2] 张硕 陈冠奇 YUAN Hong-chun;ZHANG Shuo;CHEN Guan-qi(College of Information Technology,Shanghai Ocean University,Shanghai 201306,China;Key Laboratory of Fisheries Information,Ministry of Agriculture and Rural Affairs,Shanghai 201306,China)
机构地区:[1]上海海洋大学信息学院,上海201306 [2]农业农村部渔业信息重点实验室,上海201306
出 处:《江苏农业学报》2021年第2期435-442,共8页Jiangsu Journal of Agricultural Sciences
基 金:国家自然科学基金项目(41776142);国家重点研发计划项目(2018YFD0701003)。
摘 要:为解决传统渔场渔情预测方法在处理高维复杂海洋数据时存在人工干预较多、拟合困难、精度不高的问题,提出了一种基于双模态深度学习的渔场渔情预测方法。首先,该方法将不同海洋环境因子在5°×5°渔业作业区域范围内按照空间相对位置映射为三维矩阵。然后,分别使用卷积神经网络模型(CNN)和深度神经网络模型(DNN)对海洋环境因子和时空因子2种异构数据进行特征提取。最后,将基于时空信息的深度神经网络模型与卷积结构进行特征融合,再将融合后的特征经过全连接层进行分类。试验结果表明,双模态深度学习模型对南太平洋长鳍金枪鱼中心渔场的渔场渔情预报率达到了89.8%,较其他渔场渔情预报模型精度提高10%~30%。同时由于该模型使用卷积神经网络,可以对任意空间分辨率的海洋环境因子进行特征提取,省去了手动匹配不同空间分辨率的过程,减少了人工干预,对南太平洋长鳍金枪鱼的渔业作业与渔场渔情预报有极高的指导意义。To solve the problems of much manual intervention,difficulty in fitting and low accuracy in processing ocean data of high-dimensional complex by traditional fishery forecasting methods in the fishing ground,a fishery forecasting method based on dual-modal deep learning was proposed.Firstly,the method mapped different marine environmental factors within a 5°×5°fishery operation area into a three-dimensional matrix according to their relative spatial positions.Secondly,features of two heterogeneous data such as marine environmental factors and spatiotemporal factors were extracted by convolutional neural network(CNN)model and deep neural network(DNN)model respectively.Finally,the deep neural network model based on spatiotemporal information and the convolution structure were fused by feature,and the fused features were classified through the fully connected layer.The results showed that,the forecast rate of fishery by dual-modal deep learning model in the central fishing ground of albacore in the South Pacific reached 89.8%,which improved the forecast accuracy by 10%-30%compared with forecast models in other fishing grounds.At the same time,because the model used a convolutional neural network,which could extract features of marine environmental factors with any spatial resolution,thus eliminated the process of matching different spatial resolutions by manual and reduced manual intervention,which showed extremely high guiding significance for the fishing operations and fishery forecast in the fishing ground of albacore in the South Pacific.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.188.91.70